
C. R. Acad. Sci. Paris, Ser. I 353 (2015) 1129–1133
Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Differential geometry/Mathematical economics

Some characterizations of the quasi-sum production models 

with proportional marginal rate of substitution

Certaines caractérisations des modèles de production quasi-somme avec un 

taux marginal de substitution proportionnelle

Alina Daniela Vîlcu a, Gabriel Eduard Vîlcu b,a
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r é s u m é

Dans cette note, nous classons les fonctions de production quasi-somme avec élasticité 
constante de la production par rapport à un facteur de production et avec un taux marginal 
de substitution proportionnel.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The notion of production function is a key concept in both macroeconomics and microeconomics, being used in the 
mathematical modeling of the relationship between the output of a firm, an industry, or an entire economy, and the in-
puts that have been used in obtaining it. Generally, production function is a twice differentiable mapping f : Rn+ → R+ , 
f = f (x1, . . . , xn), where f is the quantity of output, n is the number of the inputs and x1, . . . , xn are the factor inputs. 
A production function f is called quasi-sum [3,5] if there are strict monotone functions G, h1, . . . , hn with G ′ > 0 such that

f (x) = G(h1(x1) + . . . + hn(xn)), (1)

where x = (x1, . . . , xn) ∈ R
n+ . We note that these functions are of great interest because they appear as solutions to the 

general bisymmetry equation, being related to the problem of consistent aggregation [1].
Among the family of production functions, the most famous is the so-called Cobb–Douglas production function. A gener-

alized Cobb–Douglas production function depending on n-inputs is given by
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f (x1, . . . , xn) = A ·
n∏

i=1

xαi
i , (2)

where A, α1, . . . , αn > 0. We recall that a production function of the form f (x) = G(h(x1, . . . , xn)), where G is a strictly 
increasing function and h is a homogeneous function of any given degree p, is said to be a homothetic production function 
[7]. It is easy to see that a production function f can be identified with the graph of f , i.e. the nonparametric hypersurface 
of En+1 defined by

L(x1, . . . , xn) = (x1, . . . , xn, f (x1, . . . , xn)) (3)

and called the production hypersurface of f (see [9,11]). Motivated by some recent classification results concerning produc-
tion hypersurfaces [2,5,7,8,12], in the present work we classify quasi-sum production functions with a proportional marginal 
rate of substitution and investigate the existence of such production models whose production hypersurfaces have null 
Gauss–Kronecker curvature or null mean curvature. We recall that, if f is a production function with n inputs x1, x2, . . . , xn , 
n ≥ 2, the elasticity of production with respect to a certain factor of production xi is defined as

Exi = xi

f
fxi (4)

and the marginal rate of technical substitution of input x j for input xi is given by

MRSi j = fx j

fxi

, (5)

where the subscripts denote partial derivatives of the function f with respect to the corresponding variables. A production 
function satisfies the proportional marginal rate of substitution property if

MRSi j = xi

x j
, for all 1 ≤ i �= j ≤ n. (6)

In the last section of the paper we will prove the following theorem that generalizes the results from [10].

Theorem 1.1. Let f be a quasi-sum production function given by (1). Then:

i. The elasticity of production is a constant ki with respect to a certain factor of production xi if and only if f reduces to

f (x1, . . . , xn) = A · xki
i · exp

⎛
⎝D

∑
j �=i

h j(x j)

⎞
⎠ , (7)

where A and D are positive constants.
ii. The elasticity of production is a constant ki with respect to all factors of production xi , i = 1, . . . , n, if and only if f reduces to the 

generalized Cobb–Douglas production function given by (2).
iii. The production function satisfies the proportional marginal rate of substitution property if and only if it reduces to the homothetic 

generalized Cobb–Douglas production function given by

f (x1, . . . , xn) = F

(
n∏

i=1

xk
i

)
, (8)

where k is a nonzero real number.
iv. If the production function satisfies the proportional marginal rate of substitution property, then:

iv1. The production hypersurface has vanishing Gauss–Kronecker curvature if and only if, up to a suitable translation, f reduces 
to the following generalized Cobb–Douglas production function with constant return to scale:

f (x1, . . . , xn) = A ·
n∏

i=1

x
1
n
i . (9)

iv2. The production hypersurface cannot be minimal.
iv3. The production hypersurface has vanishing sectional curvature if and only if, up to a suitable translation, f reduces to the 

following generalized Cobb–Douglas production function:

f (x1, . . . , xn) = A ·
n∏

i=1

√
xi . (10)
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2. Preliminaries on the geometry of hypersurfaces

For general references on the geometry of hypersurfaces, we refer to [4].
If M is a hypersurface of the Euclidean space En+1, then it is known that the Gauss map ν : M → Sn maps M to the 

unit hypersphere Sn of En+1. With the help of the differential dν of ν it can be defined a linear operator on the tangent 
space T p M , denoted by S p and known as the shape operator, by g(S p v, w) = g(dν(v), w), for v, w ∈ T p M , where g is 
the metric tensor on M induced from the Euclidean metric on En+1. The eigenvalues of the shape operator are called 
principal curvatures. The determinant of the shape operator S p , denoted by K (p), is called the Gauss–Kronecker curvature. 
When n = 2, the Gauss–Kronecker curvature is simply called the Gauss curvature, which is intrinsic due to famous Gauss’s 
Theorem Egregium. The trace of the shape operator S p is called the mean curvature of the hypersurfaces. In contrast to 
the Gauss–Kronecker curvature, the mean curvature is extrinsic, which depends on the immersion of the hypersurface. 
A hypersurface is said to be minimal if its mean curvature vanishes identically. We recall now the following lemma which 
will be used in the proof of Theorem 1.1.

Lemma 2.1. (See [4].) For the production hypersurface defined by (3) and w =
√√√√1 +

n∑
i=1

f 2
i , we have:

i. The Gauss–Kronecker curvature K is given by

K = det( fxi x j )

wn+2
. (11)

ii. The mean curvature H is given by

H = 1

n

n∑
i=1

∂

∂xi

(
fxi

w

)
. (12)

iii. The sectional curvature Kij of the plane section spanned by ∂
∂xi

, ∂
∂x j

is

Ki j =
fxi xi fx j x j − f 2

xi x j

w2
(

1 + f 2
xi

+ f 2
x j

) . (13)

3. Proof of Theorem 1.1

Let f be a quasi-sum production function given by (1). Then we have

fxi (x) = G ′(u)h′
i(xi) (14)

with u = h1(x1) + . . . + hn(xn) and from (14) we derive

fxi xi = G ′′(h′
i)

2 + G ′h′′
i , i = 1, . . . ,n, (15)

fxi x j = G ′′h′
ih

′
j, i �= j. (16)

i. We first prove the left-to-right implication. If the elasticity of production is a constant ki with respect to a certain 
factor of production xi , then from (4) we obtain

fxi = ki
f

xi
. (17)

Using now (1) and (14) in (17) we get

G ′

G
= ki

1

xih′
i

. (18)

By taking the partial derivative of (18) with respect to x j , j �= i, we obtain

h′
j
G ′′G − (G ′)2

G2
= 0.

Now, taking into account that h j is a strict monotone function, we find

G(u) = C · eDu, (19)
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for some positive constants C and D . Hence from (18) and (19) we obtain

hi(xi) = ki

D
ln xi + Ai, (20)

where Ai is a real constant. Finally, combining (1), (19) and (20) we get a function of the form (7), where A = CeD·Ai . The 
converse can be verified easily by direct computation.

ii. The assertion is an immediate consequence of i.
iii. Assume first that f satisfies the proportional marginal rate of substitution property. Then from (5), (6) and (14) we 

derive xih′
i = x jh′

j , ∀i �= j. Hence we conclude that there exists a nonzero real number k such that: xih′
i = k, i = 1, . . . , n, and 

therefore we obtain

hi(xi) = k ln xi + Ci, i = 1, . . . ,n, (21)

for some real constants C1, . . . , Cn . Now, from (1) and (21) we derive

f (x) = G

(
k

n∑
i=1

ln xi + A

)
,

where A =
n∑

i=1

Ci and hence we find

f (x) = (G ◦ ln)

(
A ·

n∏
i=1

xk
i

)
, (22)

where A = eA . Therefore we get a production function of the form (8), where F (u) = (G ◦ ln)(A · u).
The converse is easy to verify.
iv1. We first prove the left-to-right implication. If the production hypersurface has null Gauss–Kronecker curvature, then 

from (11) we get

det( fxi x j ) = 0. (23)

On the other hand, the determinant of the Hessian matrix of f is given by [6]

det( fxi x j ) = (G ′)n
n∏

i=1

h′′
i + (G ′)n−1G ′′

n∑
i=1

h′′
1 · . . . · h′′

i−1(h
′
i)

2h′′
i+1 · . . . · h′′

n . (24)

By using (21), (23) and (24), we obtain

(−1)n(G ′)n−1kn(G ′ − knG ′′) = 0.

But G ′ > 0 and k �= 0 and hence we derive

G ′′

G ′ = 1

kn
. (25)

After solving (25) we find

G(u) = C n ke
u

nk + D (26)

for some constants C , D with C > 0. Combining (22) and (26), after a suitable translation, we conclude that the function f
reduces to the form (9). The converse follows easily by direct computation.

iv2. Let us assume that the production hypersurface is minimal. Then we have H = 0 and from (12) we derive

n∑
i=1

fxi xi

(
1 +

n∑
i=1

f 2
xi

)
−

n∑
i, j=1

fxi fx j fxi x j = 0

which reduces to
n∑

i=1

fxi xi +
∑
i �= j

(
f 2

xi
fx j x j − fxi fx j fxi x j

)
= 0. (27)

By introducing (14), (15) and (16) in (27), we get
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G ′′
n∑

i=1

(h′
i)

2 + G ′
n∑

i=1

h′′
i + (G ′)3

∑
i �= j

(h′
i)

2h′′
j = 0. (28)

By using now (21) in (28) and taking into account that k �= 0, we obtain

(kG ′′ − G ′)
n∑

i=1

1

x2
i

− k2(G ′)3
∑
i �= j

1

x2
i x2

j

= 0. (29)

But the only solution to the equation (29) is G(u) = constant, which is a contradiction because G ′ > 0. Hence the pro-
duction hypersurface cannot be minimal.

iv3. Assume first that the production hypersurface has Kij = 0. Then from (13) we get

fxi xi fx j x j − f 2
xi x j

= 0. (30)

By introducing (14), (15) and (16) into (30), since G ′ �= 0, we obtain

[(h′
i)

2h′′
j + (h′

j)
2h′′

i ]G ′′ + h′′
i h′′

j G ′ = 0. (31)

By using now (21) in (31) and taking into account that k �= 0, we obtain

G ′′

G ′ = 1

2k
. (32)

After solving (32) we get

G(u) = 2 k Ce
u
2k + D (33)

for some constants C , D with C > 0. Finally, combining (22) and (33), after a suitable translation, we conclude that the 
function f reduces to the Cobb–Douglas production function given by (10). The converse is easy to verify by direct compu-
tation.
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