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We unify several Bellman function problems treated in [1,2,4–6,9–12,14–16,18–25]. For 
that purpose, we define a class of functions that have, in a sense, small mean oscillation 
(this class depends on two convex sets in R

2). We show how the unit ball in the BMO
space, or a Muckenhoupt class, or a Gehring class can be described in such a fashion. 
Finally, we consider a Bellman function problem on these classes, discuss its solution and 
related questions.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Nous unifions plusieurs problèmes concernant la fonction de Bellman traités dans [1,
2,4–6,9–12,14–16,18–25]. Dans ce but, nous introduisons une classe de fonctions dont 
l’oscillation moyenne est petite dans un certain sens (cette classe depend de deux sous-
ensembles convexes de R

2). Nous démontrons que la boule unité de l’espace BMO, ou de 
la classe de Muckenhoupt, ou de la classe de Gehring, peut être décrite de cette façon. 
Finalement, nous considérons un problème de fonction de Bellman sur chacune de ces 
classes et discutons sa résolution ainsi que des questions voisines.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Since Slavin [12] and Vasyunin [18] proved the sharp form of the John–Nirenberg inequality (see [15]), there have been 
many papers where similar principles were used to prove sharp estimates of this kind. However, there is no theory or even 
a unifying approach; moreover, the class of problems to which the method can be applied has not been described yet. 
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There is a portion of heuristics in the folklore that is each time applied to a new problem in a very similar manner. The 
first attempt to build a theory (at least for BMO) was made in [16], then the theory was developed in the paper [4] (see 
the short report [5] also). We would also like to draw the reader’s attention to the preprint [6], which can be considered 
as a description of the theory for the BMO space in a sufficient generality. Problems of this kind were considered not only 
in BMO, but in Muckenhoupt classes, Gehring classes, etc. (see [1,2,11,13,19,20]). In this short note, we define a class of 
functions and an extremal problem on it that includes all the problems discussed above.

1. Setting

Let �0 be a non-empty open strictly convex subset of R2 and let �1 be an open strictly convex subset of �0. We define 
the domain � as cl(�0 \ �1) (the word “domain” comes from “domain of a function”; the symbol cl denotes the closure) 
and the class A� of summable R

2-valued functions on an interval I ⊂ R as follows:

A� = {
ϕ ∈ L1(I,R2) | ϕ(I) ⊂ ∂�0 and ∀ subinterval J ⊂ I 〈ϕ〉 J /∈ �1

}
. (1)

Here 〈ϕ〉 J = 1
| J |

∫
J ϕ(s) ds is the average of ϕ over J . In Section 2 we show how the unit ball in BMO as well as the “unit 

balls” in Muckenhoupt and Gehring classes can be represented in the form (1). Let f : ∂�0 → R be a bounded from below 
Borel measurable locally bounded function. We are interested in sharp bounds for the expressions of the form 〈 f (ϕ)〉I , 
where ϕ ∈ A� .

Again, in Section 2 we explain how the John–Nirenberg inequality or other inequalities of harmonic analysis can be 
rewritten as estimations of such an expression. The said estimates are delivered by the corresponding Bellman function

B�, f (x) = sup
{〈 f (ϕ)〉I

∣∣ 〈ϕ〉I = x, ϕ ∈ A�

}
. (2)

Problem 1.1. Given a domain � and a function f , calculate the function B�, f .

The particular cases of this problem were treated in the papers [1,2,4–6,9–12,14–16,18–25] (see Section 2 for a detailed 
explanation). The main reason for Problem 1.1 to be solvable (and it has been heavily used in all the preceeding work) is 
that the function B enjoys good properties.

Definition 1.2. Let ω be a subset of Rd . We call a function G: w →R ∪{+∞} locally concave on ω if for every segment � ⊂ ω
the restriction G

∣∣
�

is concave.

Define the class of functions on �:

��, f =
{

G:� →R∪ {+∞}
∣∣∣ G is locally concave on �, ∀x ∈ ∂�0 G(x) � f (x)

}
. (3)

The function B�, f is given as follows:

B�, f (x) = inf
G∈��, f

G(x). (4)

Conjecture 1.3. B�, f =B�, f .

In particular, the conjecture states that the Bellman function is locally concave (because the function B�, f is).

Problem 1.4. Prove Conjecture 1.3 in adequate generality.

Though it may seem that one should solve Problem 1.4 before turning to Problem 1.1, it is not really the case. All the 
preceding papers used Conjecture 1.3 as an assumption that allowed the authors to guess B , then to prove that this function 
was the Bellman function indeed, and only then verify Conjecture 1.3 for � and f chosen. However, to treat Problem 1.4 in 
itself, one has to invent a different approach, see Section 3.

2. Examples

From now on, we follow the agreement: if g: R → R
2 is some fixed parameterization of ∂�0, then the func-

tion f (g): R →R is denoted by f̃ .
The BMO space. We consider the BMO space with the quadratic seminorm. Let ε be a positive number. Set �0 = {x ∈

R
2 | x2

1 < x2} and �1 = {x ∈R
2 | x2

1 + ε2 < x2}. A function

ϕ = (ϕ1,ϕ2): I → ∂�0
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belongs to the class A� if and only if its first coordinate ϕ1 belongs to BMOε (the ball of radius ε in BMO). Indeed, for 
any t ∈ I , we have ϕ2(t) = ϕ2

1 (t); therefore, the condition 〈ϕ〉 J /∈ �1 can be rewritten as

〈ϕ2
1〉 J � 〈ϕ1〉2

J + ε2,

which is the same as

〈(ϕ1 − 〈ϕ1〉 J
)2〉 J � ε2. (5)

Now we see that the class A� corresponds to BMOε . The Bellman function (2) estimates the functional 〈 f̃ (ϕ1)〉I . The 
solution to Problem 1.1 with f̃ (t) = eλt leads to the John–Nirenberg inequality in its integral form, the case f̃ (t) =
χ(−∞,−λ]∪[λ,∞)(t) corresponds to the weak form of the John–Nirenberg inequality, and the case f (t) = |t|p leads to equiva-
lent definitions of BMO. We refer the reader to the paper [4] for a detailed discussion. This case is the subject of study for 
the papers [4,6,9,10,15,16,21,22,25].

Classes Ap1,p2 . Let p1 and p2, p1 > p2, be real numbers and let Q � 1. Suppose

�0 = {x ∈R
2 | x1, x2 > 0, x

1
p2
2 < x

1
p1
1 } and �1 = {x ∈R

2 | x1, x2 > 0, Q x
1

p2
2 < x

1
p1
1 }.

If a function ϕ belongs to the class A� , then its first coordinate ϕ1 belongs to the so-called Ap1,p2 class. The “norm” in this 
class is defined as

[ψ]A p1,p2
= sup

J⊂I
〈ψ p1〉

1
p1
J 〈ψ p2〉−

1
p2

J , (6)

where the supremum is taken over all subintervals of I . These classes were introduced in [20]. If p ∈ (1, ∞), then A1,− 1
p−1

=
Ap , where Ap stands for the classical Muckenhoupt class. When p2 = 1 and p1 > 1, the class Ap1,p2 coincides with the 
so-called Gehring class (see [7] or [8]). Estimates of integral functionals as provided by the Bellman function (2) lead to 
various sharp forms of the reverse Hölder inequality, see [20]. These cases were treated in the papers [1,2,11,19,20].

Reverse Jensen classes. These classes were introduced in [7]. Let �: R+ →R+ be a convex function. Let Q > 1. Consider 
the class of functions ψ: I →R+ such that

∀ J ⊂ I 〈�(ψ)〉 J � Q �(〈ψ〉 J ).

Surely, both a Muckenhoupt class and a Gehring class can be described as certain Reverse Jensen classes. The corresponding 
domain is {x ∈ R

2 | x1, x2 � 0, �(x1) � x2 � Q �(x1)}. Consult a very recent paper [13], where the Bellman function on 
the domain {x ∈ R

2 | ex1 � x2 � Cex1 }, C > 1, provides sharp constants in the John–Nirenberg inequality for the BMO space 
equipped with the Lp -type seminorm.

3. Hints to solutions

First, we note that strict convexity of �0 implies the fact that B(x) = f (x) for x ∈ ∂�0. Second, we need � to fulfill 
several assumptions that all the domains listed in Section 2 do satisfy.

1. The domains �0 and �1 are unbounded. (7)

2. The boundary of �1 is C2-smooth. (8)

3. Every ray inside �0 can be translated to belong to �1 entirely. (9)

The first two conditions are technical in a sense, the third one is essential, since (under assumption (7)) it is equivalent to 
the fact that for any x ∈ � there exists a function ϕ ∈ A� such that 〈ϕ〉I = x (i.e. the supremum in formula (2) is taken over 
a non-empty set). Now we are ready to present a solution to Problem 1.4.

Theorem 3.1. Let the domain � satisfy the conditions (7), (8), (9). If the function f is bounded from below, then B�, f = B�, f .

The condition that f is bounded from below is not necessary. However, we note that without this condition the extremal 
problem in formula (2) is not well posed (the integral of f (ϕ) may be not well defined). In [17] the reader can find the 
proof of Theorem 3.1 for the case cl�1 ⊂ �0 as well as its analog where f can be unbounded from below.

To solve Problem 1.1, we need to consider even more restrictive conditions, we introduce some notation for that purpose. 
Choose g = (g1, g2): R → R

2 to be a continuous parameterization of ∂�0; let the domain � lie on the left of this oriented 
curve. For any number u ∈ R we draw two tangents from the point g(u) to the set �1; by a tangent we mean not a line, 
but a segment connecting g(u) with the tangency point. We denote the lengths of the left and the right tangents by �L(u)

and �R(u) correspondingly (the left tangent lies between the right one and g′ , see [4] for explanations about this notation).
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1. The boundaries ∂�0 and ∂�1 are C3-smooth curves, the function f is C3-smooth. (10)

2. The curve γ (t) = (
g1(t), g2(t), f̃ (t)

)
changes the sign of its torsion a finite number of times. (11)

3. The integrals

0∫
−∞

1

�R
and

+∞∫
0

1

�L
diverge. (12)

In Condition (12), the integration is with respect to the natural parameterization of the curve ∂�1, where the functions �R
and �L are considered as the functions of their tangency points lying on ∂�1. The last Condition (12) is more mysterious; 
we believe that our considerations may work without it.

We also need a summability assumption for the function f . Let αR(u) denote the oriented angle between the right 
tangent at the point u and the vector (1, 0), let αL(u) denote the oriented angle between the left tangent at the point u
and the vector (1, 0). Then, the summability condition requires the bulky integral

t∫
−∞

exp

( t∫
τ

g′
1

�R cos(αR)

)
tan(αR(τ ))g′

1(τ ) − g′
2(τ )

(g′
1(τ )g′′

2(τ ) − g′
2(τ )g′′

1(τ ))2

∣∣∣∣∣
f̃ ′(τ ) f̃ ′′(τ ) f̃ ′′′(τ )

g′
1(τ ) g′′

1(τ ) g′′′
1 (τ )

g′
2(τ ) g′′

2(τ ) g′′′
2 (τ )

∣∣∣∣∣ dτ (13)

to converge for any t ∈R (and a similar condition with R replaced by L and with −∞ replaced by +∞).
Claim: under Conditions (7), (9), (10), (11), (12), and the mentioned convergence conditions for the integrals (13), we 

can solve Problem 1.1.
As in [4], by “solution” we mean an expression for the function B , which may include roots of implicit equations, 

differentiations, and integrations. Though at the first sight, the benefit of such a “solution” may seem questionable, it occurs 
to be useful if one has a specific domain � and a function f at hand, see examples in the papers [4,6], the whole paper [22]
that treats the cases of functions f extremely difficult from an algebraic point of view, and other papers on the subject.

It appears that to solve Problem 1.1, one has to reformulate reasonings from [4] and [6] in geometric terms and observe 
that in such terms they work for a more general setting of the problem considered. For example, the integral (13) plays the 
role of the force function coming from −∞ (see [4] for the definition in the case of BMO) in the general setting. However, 
the geometric essence of the matter is even more revealed in the example of the chordal domain (it has already been used 
in [3]). We remind the reader that a chordal domain is a type of foliation (see [4] for the definition) that consists of chords, 
i.e. segments that connect two points of ∂�0. In the case of the parabolic strip g(t) = (t, t2), the chordal domain could 
match B f if and only if it satisfied the cup equation

f̃ (b) − f̃ (a)

b − a
= f̃ ′(b) + f̃ ′(a)

2
; (a,a2) and (b,b2) are the endpoints of a chord,

and two special differential inequalities (“inequalities for the differentials”) for each of its chord. In the general setting of 
Problem 1.1, the cup equation turns into∣∣∣∣∣∣

g′
1(a) g′

2(a) f̃ ′(a)

g′
1(b) g′

2(b) f̃ ′(b)

g1(b) − g1(a) g2(b) − g2(a) f̃ (b) − f̃ (a)

∣∣∣∣∣∣ = 0; g(a) and g(b) are the endpoints of a chord,

which has the following geometrical meaning: the tangent vectors to the curve γ (t) = (g1(t), g2(t), f̃ (t)) at the points a
and b lie in one two-dimensional plane with the vector γ (a) − γ (b). The special differential inequalities (the so-called 
inequalities for the differentials) can also be re-stated in purely geometric terms (the triple product of γ ′(a), γ (b) − γ (a), 
and the normal to γ at the point a should be negative; the same should be fulfilled with a and b interchanged) and then 
generalized to fit Problem 1.1.

In [4] the roots of f̃ ′′′ played the main role. Indeed, the cups sit on the points where f̃ ′′′ changes its sign from + to −. 
In the general case, the function f̃ ′′′ should be replaced by the torsion of the curve γ . One can see the traces of the torsion 
in formula (13). Moreover, now we see that Condition (11) is a straightforward generalization of the regularity condition 
from [4].

We recall that in [4] the problem was treated not in the full generality (we assumed that the roots of f̃ ′′′ were well 
separated). This narrowed the list of local types of foliations. However, without such an assumption, the collection of figures 
is wider, see the preprint [6] for the general theory, and the example [22], where almost all figures from the general case 
appear. The latter paper also highlights the notation that becomes very important when there are lots of different figures 
(it appeared that a foliation corresponds to a special weighted graph). We only mention that all the figures are transferred 
to the general setting of Problem 1.1, as well as all the monotonicity lemmas for forces and tails (see [4] for definitions).
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