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We analyze the well-posedness of a scattering problem of time-harmonic electromagnetic 
waves by periodic structures with sign-changing coefficients. Transmission problems for 
Maxwell’s equations with sign-changing coefficients in bounded domains have been 
recently studied by Bonnet-Ben Dhia and co-workers in the so-called T -coercivity 
framework. In this article, we generalize such a framework for periodic scattering problems 
relying on an integral equation approach. The periodic scattering problem is formulated by 
a hypersingular integral equation of Lipmann–Schwinger type. We prove that the integral 
equation satisfies a Gårding-type estimate, which allows us to establish the well-posedness 
of the problem in the sense of Fredholm.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Nous analysons le caractère bien posé du problème de diffraction d’ondes électro-
magnétiques par des structures périodiques dont les coefficients diélectriques changent 
de signe. Le problème de diffraction pour les équations de Maxwell avec des coefficients 
qui changent de signe a été récemment étudié par Bonnet-Ben Dhia et al. en utilisant le 
concept de la T-coercivité. Dans cette note, nous étendons cette étude à la diffraction 
par un réseau périodique en se basant sur une formulation intégrale volumique du 
problème. Le problème de diffraction est d’abord écrit sous la forme d’une équation de 
type Lippmann–Schwinger avec un noyau hyper-singulier. Nous montrons ensuite que la 
solution de cette équation satisfait une estimation a priori de type Gårding, ce qui nous 
permet de conclure sur le caractère bien posé du problème au sens de Fredholm.
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1. Introduction

Electromagnetic scattering theory in periodic structures is well known as a topic of great interest in applications, e.g., 
for the construction and optimization of optical filters, lenses, and beam-splitters in optics (see [10]). There is a large 
body of applied math literature on forward and inverse scattering problems related to periodic dielectric materials, see 
for example [3,8] and references therein. Recently, periodic metamaterials with applications in photonics and optics have 
received intense research interest in the engineering and applied physics community (see for instance [1,9]). However, 
to the knowledge of the authors, there have been only a few works on periodic metamaterials in the applied mathematics 
literature. The paper [6] studies the Fredholm property of a scattering problem for periodic metamaterials known as gratings 
in two dimensions.

We consider in this work an electromagnetic scattering problem for biperiodic gratings consisting of dielectric materials 
and metamaterials. By biperiodic, we mean that the grating is periodic in the, say, x1- and x2-direction, while it is bounded 
in the x3-direction. This is modeled by a periodic scattering problem for 3D Maxwell’s equations with sign-changing co-
efficients. Transmission Maxwell problems with sign-changing coefficients in bounded domains have been recently studied 
in [4] by the so-called T -coercivity framework. In this article, we generalize such a framework for periodic scattering prob-
lems relying on an integral equation approach. It is known in [5,8] that scattering problems for Mawell’s equations can be 
formulated as a hypersingular integral equation of Lipmann–Schwinger type. We aim to prove a Gårding-type estimate for 
the integral equation with sign-changing coefficients. The idea is to investigate such estimates for the integral equation in 
a truncation of the unit cell. This, roughly speaking, enables the use of variational formulation of the integral operators, 
which allows us to incorporate the idea of T -coercivity. It also turns out that one needs similar assumptions as in [4] when 
applying the T -coercivity framework.

The integral equation approach in this work has some advantages in the sense that the Fredholm property obtained is 
valid at Rayleigh frequencies, which is typically excluded in the variational approach. It further avoids technical complication 
that one might have when treating boundary terms, with Calderón maps, perturbed by the abstract operator T in the 
T -coercivity framework.

Notation: Let O be a bounded domain (connected and open) with Lipschitz boundary ∂O. We indistinctly denote 
by 〈·, ·〉 the inner products of L2(O) and (L2(O))3 and by ‖ · ‖ the associated norms. We set L∞

p (R3) = {v ∈ L∞(R3) :
v is 2π-periodic in x1 and x2}, Hα(curl, O) is the closure with respect to the norm ‖ · ‖ + ‖ curl ·‖ of space of smooth func-
tions that is α-quasi-periodic in x1 and x2.

2. Periodic electromagnetic scattering

We consider the scattering of time-harmonic electromagnetic waves from a diffraction grating consisting of dielectric 
materials and metamaterials. The electric field E and the magnetic field H are governed by the time-harmonic Maxwell’s 
equations at frequency ω > 0 in R3

curl H + iωεE = 0, curl E − iωμH = 0 in R
3, (1)

where the electric permittivity ε, the magnetic permeability μ are real-valued functions in L∞
p (R3). We assume that there 

are positive constants ε0 and μ0 such that ε = ε0, μ = μ0 outside the grating. We define the wave number k = ω(ε0μ0)
1/2.

The grating is illuminated by an electromagnetic plane wave with wave vector d = (d1, d2, d3) ∈ R
3, d3 �= 0 such that 

d · d = k2. The polarizations p, s ∈ R
3 of the incident wave satisfy p · d = 0 and s = 1/(ωε0)(p × d). With these definitions, 

the incident plane waves Ei and Hi are given by

Ei = s eid·x, Hi = p eid·x, x ∈R
3. (2)

For d = (d1, d2, d3) ∈ R
3 defined in (2), we set α = (α1, α2, 0) = (d1, d2, 0). Then a function u : R3 → C

3 is then called 
α-quasi-periodic if, for all x = (x1, x2, x3)

	 ∈R
3, n = (n1, n2, 0)	 ∈ Z

3,

u(x1 + 2πn1, x2 + 2πn2, x3) = e2π iα·nu(x1, x2, x3).

Note that the incident fields Ei , Hi defined in (2) are α-quasi-periodic functions. The relative material parameters are 
defined by εr = ε/ε0, μr = μ/μ0. We wish to reformulate (1) in terms of the scattered field u, defined by u := H − Hi . 
Since, by construction, curl curl Hi − k2 Hi = 0, eliminating the electric field E from (1), and subtracting the latter equation 
implies that

curl
(
ε−1

r curl u
) − k2μru = curl

(
q curl Hi) + k2 pHi in R

3, (3)

where the contrasts q, p are defined by

q := 1 − ε−1
r , p := μr − 1.

It is required that u also be α-quasi-periodic in x1 and x2 and that it admits a Rayleigh expansion radiation condition of 
the form (see, e.g., [3,8])
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u(x) =
∑

n∈Z2

c±
n ei(αn·x±βn(x3∓h)) for x3 ≷ ±h, (4)

where c±
n ∈ C

3, αn = (α1 +n1, α2 +n2, 0), βn = √
k2 − |αn|2 with the branch of the square root chosen such that Re (βn) ≥ 0

and Im (βn) ≥ 0, and h > sup{|x3| : (x1, x2, x3)
	 ∈ supp(q) ∪ supp(p)}. Now we define

� := (−π,π)2 ×R, D := [supp(q) ∪ supp(p)] ∩ �.

Recall that εr, μr belong to L∞
p (R3). We further make the following assumption on εr and μr and D for our analysis.

Assumption 2.1. We assume that the support D is a bounded and simply connected domain in R3 such that its Lipschitz boundary ∂ D
is connected, and that ε−1

r , μ−1
r belong to L∞

p (R3).

The problem (3)–(4) can be reduced to one period � due to its periodicity. We now consider a more general problem as 
follows: given f , g ∈ (L2(D))3, find u : � →C

3 such that

curl
(
ε−1

r curl u
) − k2μru = curl f + k2 g in �, (5)

and the radiation condition (4). To study the well-posedness of the latter problem, we reformulate it as an integral equation 
of Lippmann–Schwinger type. This has been done in [5] for scattering problems in bounded inhomogeneous media. The 
following lines follow from [8].

We denote by Gk the α-quasi-periodic Green’s function to the Helmholtz equation in R3. From [3], we know that Gk(x) =
exp(ik|x|)/(4π |x|) + 	k(x) for x �= 0, where 	k is an analytic function solving the Helmholtz equation 
	k + k2	k = 0 in 
(−2π, 2π)2 ×R. Now, for any R > 0, the truncation �R of the unit cell � is defined by

�R = (−π,π)2 × (−R, R), �±R = (−π,π)2 × {±R}.
We define the volume potential Vk by

(Vk f )(x) =
∫
D

Gk(x − y) f (y)dy, x ∈ �, (6)

for f ∈ L2(D). The following lemma is the main ingredient for the integral equation formulation, which is also necessary for 
our analysis later on. Its proof can be found in chapter 3 of [8].

Lemma 2.2. The volume potential Vk defined in (6) is bounded from L2(D) into H2
α(�R) for all R > 0. The potentials Ak = curl Vk

and Bk = (k2 + ∇div)Vk are bounded from (L2(D))3 into Hα(curl, �R) for all R > 0. Further, for g ∈ (L2(D))3 , Ak g and Bk g are the 
unique solution to∫

�

(curl Ak g · curl ψ − k2 Ak g · ψ)dx =
∫
D

g · curl ψ dx,

∫
�

(curl Bk g · curlψ − k2 Bk g · ψ)dx = k2
∫
D

g · ψ dx,

for all ψ ∈ Hα(curl, �) with compact support, and additionally the radiation condition (4).

The scattering problem (4)–(5) is equivalent to the integral equation (see [8] for more details)

u − Ak(q curl u + f ) − Bk(pu + g) = 0 in �h. (7)

3. T -Coercivity framework

In this section, we study the framework of T -coercivity in quasi-periodic function spaces. For ξ ∈ L∞
p (R3), we define:

Sα(�h) =

⎧⎪⎨
⎪⎩v ∈ H1

α(�h) :
∫

∂�h

v = 0

⎫⎪⎬
⎪⎭ ,

Vα(ξ,�h) = {w ∈ Hα(curl,�h) : 〈ξ w,∇ψ〉 = 0 for all ψ ∈ Sα} ,

Xα(ξ,�h) = {u ∈ Hα(curl,�h) : div(ξu) = 0 in �h,n × u = 0 on ∂�h} .

It is well-known that 〈∇·, ∇·〉 defines an inner product on Sα(�h) with an equivalent norm given by ‖u‖Sα(�h) = ‖∇u‖. Let 
X be Vα(1, �h) or Xα(1, �h). The proof of the following lemmas can be done similarly as in the free space case, see [2,4].
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Lemma 3.1. The embedding of X in (L2(�h))3 is compact. Further, there exists a positive constant C such that ‖w‖ ≤ C‖ curl w‖ for 
all w ∈ X. Thus, 〈curl ·, curl ·〉 defines an inner product on X with an equivalent norm given by ‖w‖X = ‖ curl w‖.

Lemma 3.2. A function u ∈ Hα(div, �h) satisfies

divu = 0 in �h, and

∫
∂�h

(n · u)φ ds = 0 for all φ ∈ Sα(�h) (8)

if and only if there exists a vector potential ψ in Xα(1, �h) such that u = curlψ . Further, this function ψ is unique.

As in [4], the following assumption is important for the T -coercivity framework. We also refer to the cited paper for a 
detailed investigation on geometric configurations related to this assumption.

Assumption 3.3. (Hεr): There exists an isomorphism T εr in H1
0(�h) and a positive constant C such that

|〈εr∇u,∇T εr u〉| ≥ C‖∇u‖2, for all u ∈ H1
0(�h).

(Hμr): There exists an isomorphism T μr in Sα(�h) and a positive constant C such that

|〈μr∇u,∇T μr u〉| ≥ C‖∇u‖2, for all u ∈ Sα(�h).

Lemma 3.4. Suppose the assumptions (Hεr) and (Hμr ) hold true, there exist isomorphisms T in Vα(μr, �h) and ̃T in Xα(1, �h) such 
that

〈ε−1
r curl u, curl T v〉 = 〈ε−1

r curl T u, curl v〉 = 〈curl u, curl v〉, for all u, v ∈ Vα(μr,�h),

〈μ−1
r curl u, curl T̃ v〉 = 〈μ−1

r curl T̃ u, curl v〉 = 〈curl u, curl v〉, for all u, v ∈ Xα(1,�h).

We refer to [4] for the proof of Lemma 3.4.

Lemma 3.5. Suppose the assumption (Hμr) holds true. Vα(μr, �h) is compactly embedded in (L2(�h))3 .

Proof. Assume that (un) is a bounded sequence in Vα(μr, �h). Since μrun satisfies (8), Lemma 3.2 implies that there exists 
wn ∈ Xα(1, �h) such that un = μ−1

r curl wn . Recall that μ−1
r ∈ L∞(�h), it is sufficient now to show that (curl wn) has a 

subsequence that converges in (L2(�h))3.
Since (un) is a bounded sequence in Vα(μr, �h), the equation un = μ−1

r curl wn implies that (wn) is also bounded 
in Xα(1, �h). The compact embedding Xα(1, �h) ⊂ (L2(�h))3 deduces that (wn) has a subsequence, still denoted (wn), 
that converges in (L2(�h))3. Therefore, (wn) is a Cauchy sequence in (L2(�h))3. Now, for φ ∈ Xα(1, �h), we have 
〈curl(μ−1

r curl wnm), φ〉 = 〈μ−1
r curl wnm, curlφ〉, where wnm = wn − wm . Taking φ = T̃ wnm , where T̃ is the isomorphism 

from Lemma 3.4, we find that

〈curl unm, T̃ wnm〉 = 〈μ−1
r curl wnm, curl T̃ wnm〉 = ‖ curl wnm‖2. (9)

Furthermore, we have that (T̃ wn) is also a Cauchy sequence in (L2(�h))3 and (curl un) is bounded in (L2(�h))3. Therefore, 
we obtain from (9) that (curl wn) is a Cauchy sequence in (L2(�h))3. �

To prove the Fredholm property for the integral equation, we need the following Hodge decomposition. We notice that 
for the case that μr does not change sign this result is classical, see [7].

Lemma 3.6. Suppose the assumption (Hμr ) holds true, we have

Hα(curl,�h) = Vα(μr,�h) ⊕ ∇Sα(�h).

Furthermore, for all u = u0 + ∇p,

‖u‖2
Hα(curl,�h) = ‖ curl u0‖2 + ‖∇p‖2.

Proof. For u ∈ Hα(curl, �h), we know from the assumption (Hμr ) that there exists a unique p ∈ Sα(�h) such that∫
μr∇p · ∇ϕ dx =

∫
μru · ∇ϕ dx, for all ϕ ∈ Sα(�h).
�h �h
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This means that 
∫
�h

μr(u − ∇p) · ∇ϕ dx = 0, for all ϕ ∈ Sα(�h), or u0 := u − ∇p belongs to Vα(μr, �h). Now it remains to 
prove that

Vα(μr,�h) ∩ ∇Sα(�h) = {0}.
Let w ∈ Vα(μr, �h) ∩ ∇Sα(�h), then there exists ψ ∈ Sα(�h) such that w = ∇ψ , and 〈μr w, ∇ϕ〉 = 0 for all ϕ ∈ Sα(�h). 
Choosing ϕ = T μr ψ implies that

〈μr∇ψ,∇T μr ψ〉 = 0.

Again, from the assumption (Hμr ), we have 0 = |〈μr∇ψ, ∇T μr ψ〉| ≥ C‖∇ψ‖2, which allows us to deduce that ∇ψ = 0 or 
w = 0. �
4. Fredholm’s alternative

Theorem 4.1. Suppose that the assumptions (Hεr) and (Hμr ) hold true. Then there exist an isomorphism T, a compact operator K in 
Hα(curl, �h) and a positive constant C such that, for all u ∈ Hα(curl, �h),

Re 〈u − Ak(q curl u) − Bk(pu),Tu〉Hα(curl,�h) ≥ C‖u‖2
Hα(curl,�h) + Re 〈K u, u〉Hα(curl,�h).

Proof. Let u ∈ Hα(curl, �h). The Hodge decomposition implies that u = u0 + ∇p, where u0 ∈ Vα(μr, �h), and p ∈ Sα(�h). 
Let us consider the operator T : Hα(curl, �h) → Hα(curl, �h) defined by

u = (u0 + ∇p) �→ (T u0 + ∇T μr p),

where T and T μr are defined in Lemma 3.4 and Assumption 3.3, respectively. It is easy to check that T is an isomorphism. 
Now we define w by

w = Ai(q curl u) + Bi(pu)

= curl
∫
D

Gi(· − y)q(y) curl u(y)dy + (−1 + ∇div)

∫
D

Gi(· − y)p(y)u(y)dy.

From Lemma 2.2 we have, for all v ∈ Hα(curl, �h),

〈w, v〉Hα(curl,�h) +
∫

�±h

(n × curl w) · (n × v) × n ds =
∫
D

(q curl u · curl v dx − pu · v)dx

which implies that

〈u − w, v〉Hα(curl,�h) =
∫
�h

(ε−1
r curl u · curl v + μru · v)dx +

∫
�±h

(n × curl w) · (n × v) × n ds.

Choosing v = Tu, we have:

〈u − w,Tu〉Hα(curl,�h) =
∫
�h

(ε−1
r curl u0 · curl T u0 + μru0 · T u0 + μr∇p · ∇T μr p)dx

+
∫

�±h

(n × curl w) · (n ×Tu) × n ds ≥ C‖u‖2
Hα(curl,�h) + 〈K1u, u〉Hα(curl,�h). (10)

Here, due to Lemma 3.5 and the smoothness of w on �±h , K1 defined by

〈K1u, u〉Hα(curl,�h) =
∫
�h

μru0 · T u0 dx +
∫

�±h

(n × curl w) · (n ×Tu) × n ds

is a compact operator in Hα(curl, �h). From (10) we have:

〈u − Ak(q curl u) − Bk(pu),Tu〉Hα(curl,�h) ≥ C‖u‖2
Hα(curl,�h) + 〈K1u, u〉Hα(curl,�h)

− 〈(Ak − Ai)(q curl u) + (Bk − Bi)(pu),Tu〉Hα(curl,�h). (11)

Recall that the Green function Gk(x, y) = �k(x, y) + 	k(x, y), where �k(x, y) = exp(ik|x − y|)/(4π |x − y|) and 	k(x, y)

is an analytic function. Hence thanks to the smoothness of �k(x, y) − �i(x, y), the last term in (11) can be written as 
〈K2u, u〉Hα(curl,�h) with a compact operator K2 in Hα(curl, �h) (see [5,8]). The latter argument completes the proof. �



898 D.-L. Nguyen, T.-P. Nguyen / C. R. Acad. Sci. Paris, Ser. I 353 (2015) 893–898
Corollary 4.2. For f , g ∈ (L2(D))3 , the problem of finding u ∈ Hα(curl, �h) such that u − Ak(q curl u) − Bk(pu) = Ak f + Bk g in 
Hα(curl, �h), satisfies the Fredholm alternative, i.e., the uniqueness of the solution implies the existence of the solution.
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