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established.
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r é s u m é

Dans cette Note, nous introduisons une nouvelle méthodologie d’inférence bayésienne en 
utilisant les φ-divergences et la technique de dualité. Nous obtenons les lois asymptotiques 
des estimateurs.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Bayesian techniques are particularly attractive since they can incorporate information other than the data into the model 
in the form of prior distributions. Another feature that makes them increasingly attractive is that they can handle models 
that are difficult to estimate with classical methods by use of simulation techniques, see for instance [24].

The aim of this note is to discuss the use of divergences as a basis for Bayesian inference. The use of divergence measures 
in a Bayesian context has been considered in [10] and [22]. Ragusa [23] used Bayesian φ-divergences in a Generalized 
Empirical Likelihood framework.

The misspecification of prior distributions, the presence of large outliers with respect to the specified model, may lead 
to unreliable posterior distributions for parameters in Bayesian inference. In order to estimate model parameters and cir-
cumvent possible difficulties encountered with the likelihood function, we follow up common robustification ideas, see for 
instance [11,12], and propose to replace the likelihood in the formula of the posterior distribution by the dual form of the 
divergence between a postulated parametric model and the empirical distribution. A major advantage of the method is that 
it does not require additional accessories such as kernel density estimation or other forms of nonparametric smoothing to 
produce nonparametric density estimates of the true underlying density function in contrast with the method proposed by 
Hooker and Vidyashankar [13], which is based on the concept of a minimum disparity procedure introduced by Lindsay 
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[20]. The plug-in of the empirical distribution function is sufficient for the purpose of estimating the divergence in the case 
of i.i.d. data.

The proposed estimators are based on integration rather than on optimization. This is particularly an issue when the 
parameter space is “large”, since the search has to be done over a large-dimensional space. Other reasons, which are com-
monly put forward to use the proposed approach, are their computational attractiveness through the use of Markov chain 
Monte Carlo (MCMC), see [25], and the fact they can easily handle a large number of parameters.

The outline of the note is as follows. Together with a brief review of definitions and properties of divergences, Section 2
discusses the procedure to obtain the estimates. In Section 3, we give the limit laws of the proposed estimators. Some final 
remarks conclude the note.

2. Estimation

2.1. Background on dual divergences inference

Keziou [15] and Broniatowski and Keziou [5] introduced the class of dual divergences estimators for general parametric 
models. In the following, we shortly recall their context and definition.

Recall that the φ-divergence between a bounded signed measure Q and a probability measure (p.m.) P on D , when Q
is absolutely continuous with respect to P , is defined by

Dφ(Q , P ) :=
∫
D

φ

(
dQ

dP
(x)

)
dP (x),

where φ is a convex function from ]−∞, ∞[ to [0, ∞] with φ(1) = 0.
Different choices for φ have been proposed in the literature. For a good overview, see [21]. A well-known class of 

divergences is the class of the so-called “power divergences” introduced by Cressie and Read [9] (see also [18], Chapter 2); 
it contains the most known and used divergences. They are defined through the class of convex functions

x ∈ ]0,+∞[ �→ φγ (x) := xγ − γ x + γ − 1

γ (γ − 1)
(1)

if γ ∈R \ {0, 1}, φ0(x) := − log x + x − 1 and φ1(x) := x log x − x + 1.
Let X1, . . . , Xn be an i.i.d. sample and Pθ0 the true p.m. underlying the data. Consider the problem of estimating the 

population parameters of interest θ0, when the underlying identifiable model is given by {Pθ : θ ∈ Θ} with Θ a subset 
of Rd . Here the attention is restricted to the case where the probability measures Pθ are absolutely continuous with respect 
to the same σ -finite measure λ; the correspondent densities are denoted pθ .

Let φ be a function of class C2, strictly convex satisfying∫ ∣∣∣∣φ′
(

pθ (x)

pα(x)

)∣∣∣∣pθ (x)dx < ∞. (2)

By Lemma 3.2 in [4], if the function φ satisfies the following condition: there exists 0 < η < 1 such that for all c in 
[1 − η, 1 + η], we can find numbers c1, c2, c3 such that

φ(cx) ≤ c1φ(x) + c2|x| + c3, for all real x, (3)

then the assumption (2) is satisfied whenever Dφ(Pθ , Pα) is finite. From now on, U will be the set of θ and α such that 
Dφ(Pθ , Pα) < ∞. Note that all the real convex functions φγ pertaining to the class of power divergences defined in (1)
satisfy condition (3).

Under (2), using Fenchel’s duality technique, the divergence Dφ(Pθ , Pθ0 ) can be represented as resulting from an opti-
mization procedure; this elegant result was proven in [15,19] and [5]. Broniatowski and Keziou [4] called it the dual form 
of a divergence, due to its connection with convex analysis.

Under the above conditions, the φ-divergence:

Dφ(Pθ ,Pθ0) =
∫

φ

(
pθ (x)

pθ0(x)

)
pθ0(x)dx,

can be represented as the following form:

Dφ(Pθ ,Pθ0) = sup
α∈U

∫
h(θ,α)dPθ0 , (4)

where h(θ, α) : x �→ h(θ, α, x), ∀x ∈R and

h(θ,α, x) :=
∫

φ′
(

pθ

)
pθ −

[
pθ (x)

φ′
(

pθ (x)
)

− φ

(
pθ (x)

)]
. (5)
pα pα(x) pα(x) pα(x)
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Since the supremum in (4) is unique and is attained in α = θ0, independently upon the value of θ , by replacing the 
hypothetical probability measure Pθ0 by the empirical measure Pn define the class of estimators of θ0 by

α̂φ(θ) := arg sup
α∈U

∫
h(θ,α)dPn, θ ∈ Θ, (6)

where h(θ, α) is the function defined in (5). This class is called “dual φ-divergence estimators” (DφDE’s), see for instance 
[15] and [5].

Formula (6) defines a family of M-estimators indexed by the function φ specifying the divergence and by some instru-
mental value of the parameter θ , called here escort parameter, see also [6].

Application of dual representation of φ-divergences has been considered by many authors—we cite, among others, Keziou 
and Leoni-Aubin [16] for semi-parametric two-sample density ratio models, robust tests based on saddlepoint approxima-
tions in [29,28] have proved that this class contains robust and efficient estimators and proposed robust test statistics based 
on divergences estimators. Bootstrapped φ-divergences estimates are considered in [1]; the extension of dual φ-divergences 
estimators to right censored data are introduced in [7]; the application to tail index estimation is presented in [2], for 
estimation and tests in copula models we refer to [3] and the references therein.

2.2. Estimation

Let us now turn to the estimation using divergences in our setting. For parameter θ , let us consider a prior density 
π on Θ , and let ρ be a suitable function. Then Hanousek [11] considered the following Bayes-type or B-estimator of θ0, 
corresponding to the prior density π and generated by the function ρ ,

θ̂∗
n =

∫
Θ

θ exp {−∑n
i=1 ρ(Xi, θ)}π(θ)dθ∫

Θ
exp {−∑n

i=1 ρ(Xi, θ)}π(θ)dθ

if both integrals exist. This type of estimator is close in spirit to the class of Laplace-type estimators introduced in [8].
The posterior M-estimator corresponding to the prior density π and generated by ρ is defined as:

θ̂+
n = arg max

θ∈Θ

(
−

n∑
i=1

ρ(Xi, θ) + lnπ(θ)

)
.

Hanousek [11] showed that θ̂∗
n is asymptotically equivalent to the M-estimator generated by ρ for a large class of priors 

and under some conditions on ρ and Pθ0 . The asymptotic equivalence provides the access to the study of asymptotics for 
B-estimators via the M-estimators.

In the context of the Bayesian methods examined in this note, instead of a likelihood function, our work will use a 
criterion function Pnh(θ,α) := ∫

h(θ,α)dPn . Therefore, the inference is based on the φ-posterior

pφ,n(α|X1, · · · , Xn) = exp {nPnh(θ,α)}π(α)∫
U exp {nPnh(θ,α)}π(α)dα

.

A risk function is the expected loss or error in which the researcher incurs when choosing a certain value for the parameter 
estimate. Let Ln be a loss function. The risk function takes the form

Rn(α̃) =
∫
U

Ln(α − α̃)pφ,n(α|X1, · · · , Xn)dα,

where pφ,n(α|X1, · · · , Xn) is the φ-posterior density, α̃ is the selected value, and α is all other possible value that we are 
integrating over. The loss function can penalize the selection of α asymmetrically, and is a function of the selected value 
and the rest of the possible values of the parameters in U .

The dual φ-divergence Bayes type estimator minimizes the expected loss for different forms of the loss function

α̂∗
φ(θ) = arg inf

α̃∈U Rn(α̃).

Choosing different loss functions will change the objective function such that the estimators bear different interpretations, 
other familiar forms obtained for different loss functions are modes, medians and quantiles. For instance, when the loss is 
squared error (Ln(u) = |√nu|2), for fixed θ , the dual φ-divergence Bayes type estimator is defined as

α̂∗
φ(θ) =

∫
U

αpφ,n(α|X1, · · · , Xn)dα :=
∫
U α exp {nPnh(θ,α)}π(α)dα∫
U exp {nPnh(θ,α)}π(α)dα

, (7)

if both integrals exist.



752 M. Cherfi / C. R. Acad. Sci. Paris, Ser. I 352 (2014) 749–754
The posterior dual φ-divergences estimator is defined as

α̂+
φ (θ) = arg sup

α∈U
(
Pnh(θ,α) + lnπ(α)

)
.

It is obvious that posterior dual φ-divergences estimates naturally inherit the properties of dual φ-divergences estimates 
and hence we focus on dual φ-divergences Bayes-type estimators only.

Remark 1.

(i) The expected a posteriori (EAP) estimator, which is the mean of the posterior distribution, belongs to the class of 
estimates (7). Indeed, it is obtained when φ(x) = − log x + x − 1, that is as the dual modified KLm-divergence estimate. 
Observe that φ′(x) = − 1

x + 1 and xφ′(x) − φ(x) = log x, hence∫
h(θ,α)dPn = −

∫
log

(
dPθ

dPα

)
dPn.

Keeping in mind definitions (7), we get

α̂∗
KLm

(θ) :=
∫
U α

∏n
i=1 pα(Xi)π(α)dα∫

U
∏n

i=1 pα(Xi)π(α)dα
,

independently upon θ .
(ii) If new data Xn+1, . . . , XN are obtained, the posterior for the combined data X1, . . . , XN can be obtained by using 

posterior after n observations, pφ,n(α|X1, · · · , Xn) as a prior for α:

pφ,n(α|X1, · · · , XN) ∝ pφ,n(α|X1, · · · , Xn) × pφ,n(Xn+1, · · · , XN |α).

This leads to easy updating of the posterior distribution by a sequence of incremental changes. The methodology pre-
sented in [13] treats a data set as a single observation of a function rather than a set of distinct observations. As such 
it is difficult to separate the posterior to find the effects of a single observation.

3. Asymptotic properties

In this section we state the asymptotic normality of the estimates based on the φ-posterior and evaluate their limiting 
variance. The hypotheses handled here are similar to those used in [15] and [5] in the frequentist case; these conditions are 
mild and can be satisfied in most of circumstances. From now on, D−→ denotes the convergence in distribution. The proofs 
of our asymptotic results rely on the assumptions listed below.

(R.1)

sup
α∈U

∣∣Pnh(θ,α) − Pθ0 h(θ,α)
∣∣ a.s.−→ 0.

(R.2) There exists a neighborhood N(θ0) of θ0 such that the first- and second-order partial derivatives (w.r.t. α) of 
φ′( pθ (x)

pα(x) )pθ (x) are dominated on N(θ0) by some integrable functions. The third-order partial derivatives (w.r.t. α) 
of h(θ, α, x) are dominated on N(θ0) by some Pθ0 -integrable functions.

Let

S := −Pθ0

∂2

∂α2
h(θ, θ0) and V := Pθ0

∂

∂α
h(θ, θ0)

� ∂

∂α
h(θ, θ0).

Observe that the matrix S is symmetric and positive since the second derivative φ′′ is nonnegative by the convexity of φ.

(R.3) The matrices S and V are non-singular.

Let

Un(θ0) := Pn
∂

∂α
h(θ, θ0).

For α in an open neighborhood of θ0, using (R.2) by a Taylor expansion

Pnh(θ,α) − Pnh(θ, θ0) = (α − θ0)
�Un(θ0) − 1

2
(α − θ0)

� S(α − θ0) + Rn(α),

where Rn(α) is the rest of the Taylor expansion of Pnh(θ, α) in α around θ0.
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(R.4) Given any ε > 0, there exists δ > 0 such that, the probability of the event

sup
|α−θ0|≤δ

∣∣Rn(α)
∣∣ ≥ ε

tends to zero as n −→ ∞.

Remark 2.

(i) Using example 19.8 in [30], it is clear that the class of functions {α �→ h(θ,α);α ∈ U} is a Glivenko–Cantelli class of 
functions for all fixed θ , that (R.1) holds.

(ii) Conditions (R.2) and (R.3) are about usual regularity properties of the underlying model, they guarantee that we can 
interchange integration and differentiation and the existence of the variance–covariance matrices, they are similar to 
regularity conditions used in [15] and [5] in the frequentist case.

(iii) Condition (R.4) easily holds when there is enough smoothness. It requires that the remainder term of the expansion 
can be controlled in a particular way over a neighborhood of θ0.

Define, for any α

t := √
n(α − �n), �n := θ0 + S−1Un(θ0),

and p∗
φ,n(t) be the φ-posterior density of t .

The following theorem states that under some regularity conditions, for large n, p∗
φ,n(·) is approximately a random 

normal density in the L1 sense.

Theorem 1. Let π be any prior that is continuous and positive at θ0 with 
∫ |θ |π(θ)dθ < ∞. Then under conditions (R.1–R.4)∫ ∣∣∣∣p∗

φ,n(t) −
(

det S

2π

)d/2

exp

{
−1

2
t�St

}∣∣∣∣ dt
P−→ 0.

We now state the principal result of this section. Theorem 2 is concerned with the efficiency and asymptotic normality 
of the proposed estimates. See [14,26] and [17] for more on the consistency and efficiency of Bayes estimators.

Theorem 2. Let π be any prior that is continuous and positive at θ0 with 
∫ |θ |π(θ)dθ < ∞. Assume that conditions (R.1–R.4) hold, 

then as n tends to infinity

V −1/2 S
√

n
(
α̂∗

φ(θ) − θ0
) d−→ N (0, I).

Remark 3. The very peculiar choice of the escort parameter defined through θ = θ0 has the same limit properties as the 
MLE one. That is S�V −1 S = Iθ0 the information matrix, so that α̂∗

φ(θ0) is consistent and asymptotically efficient. The con-
sequence is that the value of the escort parameter should be taken as a consistent estimator of θ0. If the data are subject 
to contamination, better results are obtained for estimators escorted by robust estimator of θ0, see [7] and [1] for relevant 
discussion on this subject.

4. Concluding remarks

We have introduced a new estimation procedure in parametric models that combine divergences method with Bayesian 
analysis, it generalizes the expected a posteriori estimate. The proposed estimators are based on integration rather than 
optimization. These estimators are often much easier to compute in practice than the arg sup estimators (6), especially in 
the high-dimensional setting; see, for example, the discussion in [27].

In order to compute these estimators, using MCMC methods, we can draw a Markov chain,

S = (
α(1);α(2); · · · ;α(B)

);
whose marginal density is approximately given by pφ,n(·), the φ-posterior distribution. Then the estimate α̂∗

φ(θ) is computed 
as

α̂∗
φ(θ) = 1

B

B∑
i=1

α(i)

where B is the number of MCMC draws.
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Consider the construction of confidence intervals for the quantity f (θ0), for a given continuously differentiable function 
f : Θ −→ R. Define

Cn(ε) := inf

{
x :

∫
f (α)≤x

αpφ,n(α)dα ≥ ε

}
.

Then the dual φ-divergence Bayes type estimator confidence interval is given by [Cn( ε
2 ); Cn(1 − ε

2 )]. These confidence inter-
vals can be constructed simply by taking the ε

2 th and 1 − ε
2 th quantiles of the MCMC sequence

f (S) = (
f
(
α(1)

); f
(
α(2)

); · · · ; f
(
α(B)

))
,

and thus are quite simple in practice.
The very peculiar choice of the escort parameter defined through θ = θ0 has the same limit properties as the posterior 

mean. This result is of some relevance, since it leaves open the choice of the divergence, while keeping good asymptotic 
properties; we expect that it can also be used directly to provide robust inference, and we leave this study for a subsequent 
paper.

The problem of the choice of the divergence remains an open question and needs more investigation.
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