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We consider a singular integro-differential operator Λ on the real line. We build 
transmutation operators of Λ and its dual Λ̃ into the first derivative operator d/dx. Using 
these transmutation operators, we develop a new commutative harmonic analysis on the 
real line corresponding to the operator Λ.
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r é s u m é

Nous considérons un opérateur integro-différentiel singulier Λ sur la droite réelle. Nous 
construisons une paire de transformations intégrales qui transmutent Λ et son dual Λ̃ en 
l’opérateur d/dx. En utilisant les propriétés de ces opérateurs de transmutation, on définit 
une nouvelle analyse harmonique sur R correspondant à l’opérateur Λ.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Notations

We denote by E(R) the space of C∞ functions on R, provided with the topology of compact convergence for all deriva-
tives. Recall that each function f in E(R) may be decomposed uniquely into the sum f = fe + fo, where the even part 
fe is defined by fe(x) = ( f (x) + f (−x))/2 and the odd part fo by fo(x) = ( f (x) − f (−x))/2. Ee(R) (resp. Eo(R)) stands 
for the subspace of E(R) consisting of even (resp. odd) functions. For a > 0, Da(R) designates the space of C∞ functions 
on R supported in [−a, a], equipped with the topology induced by E(R). Put D(R) = ⋃

a>0 Da(R) endowed with the in-
ductive limit topology. De(R) (resp. Do(R)) denotes the subspace of D(R) consisting of even (resp. odd) functions. For 
a > 0, let Ha be the space of entire, rapidly decreasing functions of exponential type a. Put H = ⋃

a>0 Ha , endowed with the 
inductive limit topology. Let I (resp. J) denotes the map defined on Ee(R) (resp. Do(R)) by Ih(x) = 1

A(x)

∫ x
0 h(t)A(t)dt (resp. 

Jh(x) = ∫ x
−∞ h(t)dt).
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2. Transmutation operators

In [4] we have considered the first-order singular differential-difference operator

Λ0 f (x) = d f

dx
+ A′(x)

A(x)

(
f (x) − f (−x)

2

)
,

where

A(x) = |x|2α+1 B(x), α > −1/2,

B being a positive C∞ even function on R. We have exploited a pair of transmutation operators between Λ0 and the first 
derivative operator d/dx, to initiate a quite new harmonic analysis on the real line tied to Λ0, in which several analytic 
structures on R were generalized. The key role in our investigation was played by the second-order differential operator

�0 f (x) = d2 f

dx2
+ A′(x)

A(x)

d f

dx
,

which is linked to Λ0 via the relationship

Λ2
0 f = �0 f , for all f ∈ Ee(R).

Put

� = �0 + q,

where q is a real-valued C∞ even function on R. The motivation of the present paper was to look for an integro-differential 
operator of the form

Λ = Λ0 + M(x)

x∫
−x

f (t)N(t)dt

(M and N being two even functions) such that

Λ2 f = � f , for all f ∈ Ee(R). (1)

A straightforward calculation shows that (1) is equivalent to

(2MN − q) f + 2

A
(AM)′

x∫
0

f Ndt = 0,

for all f ∈ Ee(R). The easiest choice was

AM = 1 and 2MN − q = 0,

that is,

Λ = Λ0 + 1

A(x)

x∫
0

(
f (t) + f (−t)

2

)
q(t)A(t)dt.

The objective of this work is to establish for Λ results similar to those obtained for Λ0 in [4]. This objective is achieved 
by using the crucial identity (1) and some basic facts about the differential operator �. Recall that Lions [2] has constructed 
an automorphism X of Ee(R) satisfying

X
d2

dx2
f = �X f and X f (0) = f (0) for all f ∈ Ee(R).

The construction of the Lions operator X was aimed at allowing the resolution of certain mixed value problems. Later, 
Trimèche [5] has obtained for the Lions operator X the following integral representation:

X f (x) =
|x|∫
K(x, y) f (y)dy, x �= 0, f ∈ Ee(R), (2)
0
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where K(x, ·) : R → R is an even continuous function on ]−|x|, |x|[, with support in [−|x|, |x|]. Moreover, he proved that 
the integral transform

tX f (y) =
∞∫

|y|
K(x, y) f (x)A(x)dx, y ∈R, (3)

is an automorphism of De(R) satisfying the intertwining relation

d2

dx2
tX f = tX� f , f ∈De(R).

We claim the next statements.

Theorem 2.1. The map

V f = X( fe) + IX
d

dx
( fo) (4)

is the only automorphism of E(R) satisfying

V
d

dx
f = ΛV f and V f (0) = f (0) for all f ∈ E(R).

Theorem 2.2. The map

t V f = tX( fe) + d

dx
tXJ( fo) (5)

is an automorphism of D(R) satisfying the intertwining relation

d

dx
t V f = t V Λ̃ f , f ∈ D(R),

Λ̃ being the dual operator of Λ defined by

Λ̃ f (x) = d f

dx
+ A′(x)

A(x)

(
f (x) − f (−x)

2

)
+ q(x)

x∫
−∞

(
f (t) − f (−t)

2

)
dt.

Remark 2.1. (i) If A(x) = |x|2α+1 and q(x) = 0, then the integro-differential operator Λ reduces to the so-called Dunkl oper-
ator with parameter α + 1/2 associated with the reflection group Z2 on R. Moreover, V ( f )(x) = Γ (α+1)√

πΓ (α+1/2)

∫ 1
−1 f (tx)(1 −

t2)α−1/2(1 + t) dt (see [1]).
(ii) The integro-differential operators Λ and Λ̃ are connected by the integral formula: 

∫
R

Λ f (x)g(x)A(x)dx =
− 

∫
R

f (x)Λ̃g(x)A(x)dx, which is true for every f ∈ E(R) and g ∈D(R).
(iii) The integral transform V (resp. t V ) is said to be a transmutation operator between Λ (resp. Λ̃) and the first 

derivative operator d/dx on the space E(R) (resp. D(R)).
(iv) The integral transforms V and t V are dual by virtue of the relation: 

∫
R

V f (x)g(x)A(x)dx = ∫
R

f (y) t V g(y)dy, valid 
for any f ∈ E(R) and g ∈ D(R).

(v) A combination of (2), (3), (4) and (5) yields

V f (x) =
|x|∫

−|x|
K (x, y) f (y)dy

(
resp. t V f (y) =

∫
|x|≥|y|

K (x, y) f (x)A(x)dx

)

with

K (x, y) = 1

2
K(x, y) − sgn(x)

2A(x)

∂

∂ y

( |x|∫
|y|

K(t, y)A(t)dt

)
.
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3. Generalized Fourier transform

The generalized Fourier transform of a function f ∈D(R) is defined by

F( f )(λ) =
∫
R

f (x)Φ−λ(x)A(x)dx, λ ∈C,

where Φ−λ(x) = V (e−iλ·)(x). The Dunkl transform with parameter α + 1/2 associated with the reflection group Z2 on R is 
a particular case of F corresponding to A(x) = |x|2α+1 and q(x) = 0. The generalized Fourier transform F is linked to the 
classical Fourier transform ∧ on R via the relation:

F( f )(λ) = (t V f
)∧

(λ), f ∈D(R). (6)

Furthermore, we have the decomposition:

FΛ( f )(λ) = F�( fe)(λ) + iλF�J( fo)(λ), (7)

where F� stands for the Fourier transform related to the differential operator �, defined on De(R) by F�( f )(λ) =∫
R

f (x)ϕλ(x)A(x)dx; ϕλ being the solution of the differential equation �u = −λ2u, u(0) = 1 (see [5]). From (6) and the 
classical Paley–Wiener theorem, we deduce the next theorem:

Theorem 3.1 (Paley–Wiener). The generalized Fourier transform F is an isomorphism from D(R) onto H. More precisely, f ∈ Da(R)

if, and only if, F( f ) ∈ Ha.

Combining (7) and [5, Chapter 9], we establish for F the following two standard results:

Theorem 3.2 (Inversion formula). For all f ∈D(R),

f (x) + I(qJ fo)(x) =
∫
R

F( f )(λ)Φλ(x)dμ1(λ) +
∫
R

F( f )(iλ)Φiλ(x)dμ2(λ),

where μ1 is an even positive tempered measure on R, and μ2 is an even positive measure on R satisfying∫
R

ea|y|dμ2(y) < ∞, for all a > 0.

Theorem 3.3 (Parseval formula). For all f , g ∈D(R),∫
R

f (y)g(−y)A(y)dy +
∫
R

q(y)J fo(y)Jgo(y)A(y)dy =
∫
R

F( f )(λ)F(g)(λ)dμ1(λ) +
∫
R

F( f )(iλ)F(g)(iλ)dμ2(λ),

μ1 and μ2 being as in Theorem 3.2.

Remark 3.1. If A(x) = |x|2α+1 and q(x) = 0, then dμ1(λ) = 2−(2α+2)(Γ (α + 1))−2|λ|2α+1dλ and μ2 = 0.

4. Generalized translation operators

With the help of the transmutation operator V , we introduce in E(R) generalized translation operators T x , x ∈R, defined 
by:

T x f (y) = V x V y
[
V −1 f (x + y)

]
, y ∈R.

The basic properties of the T x , x ∈R, are provided by the following statement:

Theorem 4.1. (i) For all x ∈R, T x is a linear bounded operator from E(R) into itself; the function x 
→ T x is C∞ .
(ii) We have: T 0 = identity, T xT y = T y T x, ΛT x = T xΛ.
(iii) For all f ∈ E(R), T x f (y) = T y f (x).
(iv) For each λ ∈C, we have the product formula: T x(Φλ)(y) = Φλ(x)Φλ(y).
(v) For all f ∈ E(R) and g ∈ D(R), we have: 

∫
R

T x f (y)g(y)A(y)dy = ∫
R

f (y)t T x g(y)A(y)dy, where tT x g(y) =
V x(

t V −1)y[t V g(y − x)].
(vi) Let f be in Da(R), a > 0. Then for all x ∈R, tT x f is an element of Da+|x|(R) and F(t T x f )(λ) = Φ−λ(x)F f (λ).
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Let f ∈ D(R) and g ∈ E(R). The generalized convolution product of f and g is the function f #g ∈ E(R) defined by:

f #g(x) =
∫
R

tT y f (x)g(y)A(y)dy, x ∈R.

Theorem 4.2. (i) Let f ∈Da(R) and g ∈Db(R). Then f #g ∈ Da+b(R) and F( f #g)(λ) = F( f )(λ)F(g)(λ).
(ii) For all f , g ∈ D(R), we have t V ( f #g) = t V f ∗ t V g, where ∗ stands for the usual convolution on R.
(iii) For all f ∈ E(R) and g ∈ D(R), we have V ( f ∗ t V g) = V ( f )#g.

Remark 4.1. It is pointed out that all the results obtained in [4] may be recovered from those stated in the present work by 
simply taking q = 0. As for Lions operators [3], it is believed that our transmutation operators will be of great utility in the 
study of integro-differential problems, and will lead to generalizations of various analytic structures on the real line.
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