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A C [0,1] such that dimA > % and B: A — R is «-Holder continuous. The proof is an

application of Kaufman’s dimension doubling theorem. As a corollary of the above theorem,
Presented by Jean-Frangois Le Gall we show that, almost surely, there exists no set A C [0, 1] such that dimA > g and
B: A — R has finite g-variation. The zero set of B and a deterministic construction witness
that the above theorems give the optimal dimensions.
© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RESUME

On note {B(t):0 <t < 1} un mouvement brownien linéaire et dim la dimension de

Hausdorff. Pour « > % et 1 < B <2, nous montrons que, presque slirement, il n'existe pas

d’ensemble A C [0, 1] tel que dimA > % et B: A — R soit «-Holder continue. La preuve

est une application du théoréme de Kaufman sur le doublement de dimension. Comme
corollaire du théoréme ci-dessus, nous montrons que, presque siirement, il n'existe pas
d’ensemble A C [0, 1] tel que dimA > g et B: A — R ait une B-variation finie. L’ensemble
des zéros de B et une construction déterministe montrent que les théorémes ci-dessus
donnent les dimensions optimales.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

We examine how large a set can be, on which linear Brownian motion is a-Holder continuous for some o > % or has

finite B-variation for some 1 < 8 < 2. The main goal of the paper is to prove the following two theorems.

Theorem 1.1. Let {B(t): 0 < t < 1} be a linear Brownian motion and let o > % Then, almost surely, there exists no set A C [0, 1] with

dimA > % such that B: A — R is ae-Holder continuous.
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Recall that for A C [0, 1] the B-variation of a function f: A — R is defined as
n
var® (f) :sup[Z]f(x,-) - f(xi_1)]ﬂ 1Xg<---<Xp, ;€A neNtL
i=1
Theorem 1.2. Let {B(t):0 <t < 1} be a linear Brownian motion and assume that 1 < 8 < 2. Then, almost surely, there exists no set
A C[0,1] withdimA > g such that B: A — R has finite B-variation. In particular,

1
IP’(EIA :dimA > 3 and Bl is increasing) =0.

Clearly, the above theorems hold simultaneously for a countable dense set of parameters «, 8, thus simultaneously for all

o, B. Let Z be the zero set of a linear Brownian motion B. Then, almost surely, dim Z = % and B|z is a-Holder continuous

for all @ > % so Theorem 1.1 gives the optimal dimension. We prove also that Theorem 1.2 is best possible, see Theorem 4.3.

1.1. Motivation and related results

Let C[0, 1] denote the set of continuous functions f:[0,1] — R endowed with the maximum norm. Elekes proved the
following restriction theorem.

Theorem 1.3. (See Elekes [3].) Let 0 < o < 1. For the generic continuous function f € C[0, 1] (in the sense of Baire category)

(1) forall A C [0, 1], if f|a is a-Holder continuous, then dimA <1 — «;
(2) forall A C [0, 1], if f|a is of bounded variation, then dim A < %

The above theorem is sharp, the following result was proved by Kahane and Katznelson, and Mathé independently, by
different methods.

Theorem 1.4. (See Kahane and Katznelson [6], Mdthé [10].) Let 0 < « < 1. For any f € C[0, 1] there are compact sets A, D C [0, 1]
such that

(1) dimA=1—« and f|a is «-Holder continuous;
(2) dimD = % and f|p is of bounded variation.

Kahane and Katznelson also considered Holder continuous functions.

Definition 1.5. For A C [0, 1] let C*(A) and BV(A) denote the set of functions f: A — R that are a-Holder continuous and
of bounded variation, respectively. For all 0 < @ < 8 < 1, define

H(a, B) =sup{y :¥f € C*[0,113A C [0, 1] s.t. dimA =y and f|a € CP(A)},
V() :sup{y :VfeC¥0,113AC[0,1]st. dimA=y and f|s € BV(A)}.

Theorem 1.6. (See Kahane and Katznelson [6].) For all 0 < o < 8 < 1, we have:

1-p

H,p) < ——
1—-«o

1
and V(x) < ——.
2—«o

Question 1.7. (See Kahane and Katznelson [6].) Is the above result the best possible?

As the linear Brownian motion B is a-Hélder continuous for all o < % our results and Theorem 1.4 imply the following
corollary.

Corollary 1.8. Forall 0 < o < % < B < 1 we have:
H(x, B) < ! and V(x)= !
P =5 =3

Related results in the discrete setting can be found in [1].
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Definition 1.9. Let d > 2 and f:[0, 1] — R%. We say that f is increasing on a set A C [0, 1] if all the coordinate functions of
f1a are non-decreasing.

Question 1.10. Let d > 2 and let {B(t):0 <t < 1} be a standard d-dimensional Brownian motion. What is the maximal number y
such that, almost surely, B is increasing on some set of Hausdorff dimension y ?

2. Preliminaries

The diameter of a metric space X is denoted by diam X. For all s > 0, the s-dimensional Hausdorff measure of X is defined
as:

H(X) = lim H3(X), where
§—>0+
oo o0
500 =infl Y “(diam Xp)* : X X, Vi diam X; <5 ¢.

i=1 i=1

The Hausdorff dimension of X is defined as:

dim X = inf{s > 0: #*(X) < oo}.

Let ACR and o > 0. A function f:A — R is called «-Hdlder continuous if there exists a constant c¢ € (0, c0) such that
[fx) — f(y)| <clx—y|¥ for all x, y € A.

Fact 2.1.If f: A — R is «-Holder continuous, then dim f(A) < é dim A.
3. Holder restrictions
The goal of this section is to prove Theorem 1.1. First we need some preparation.

Definition 3.1. A function g: [0, 1] — R? is called dimension doubling if

dimg(A) =2dimA forall AC[O,1].
Theorem 3.2. (See Kaufman [7], see also [12].) The two-dimensional Brownian motion is almost surely dimension doubling.

The following theorem follows from [5, Lemma 2] together with the fact that the closed range of the stable subordinator
with parameter % coincides with the zero set of a linear Brownian motion. For a more direct reference see [8].

Theorem 3.3. Let A C [0, 1] be a compact set with dimA > % and let Z be the zero set of a linear Brownian motion. Then
dim(A N Z) > 0 with positive probability.

Lemma 3.4 (Key Lemma). Let {W (t): 0 <t < 1} be a linear Brownian motion. Assume that o > % and f:[0,1] — R is a continuous

function such that (f, W) is almost surely dimension doubling. Then there is no set A C [0, 1] such that dim A > % and f is «-Hélder
continuous on A.

Proof. Assume to the contrary that there is a set A C [0, 1] such that dimA > % and f is a-Holder continuous on A. As f
is still «-Holder continuous on the closure of A, we may assume that A itself is closed. Let Z be the zero set of W, then
Theorem 3.3 implies that dim(A N Z) > 0 with positive probability. Then the «-Hdlder continuity of f|4 and Fact 2.1 imply
that, with positive probability,

dim(f, W)(AN 2) =dim(f(AN 2Z) x {0}) =dim f(AN 2)
1
< 5 dim(AN 2) <2dim(AN 2),
which contradicts the fact that (f, W) is almost surely dimension doubling. O

Proof of Theorem 1.1. Let {W (t):0 <t < 1} be a linear Brownian motion which is independent of B. By Kaufman’s dimension
doubling theorem (B, W) is dimension doubling with probability one, thus applying Lemma 3.4 for an almost sure path of
B finishes the proof. O
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4. Restrictions of bounded variation

We need the following lemma, which may be obtained by a slight modification of [2, Lemma 4.1]. For the reader’s
convenience, we outline the proof.

Lemma 4.1. Let «, 8 > 0. Assume that A C [0, 1] and the function f: A — R has finite -variation. Then there are sets A, C A such
that for any n e N*

o.¢]
fla, is a-Hélder continuous and dim (A \ U An> <ap.

n=1
Proof. For all n e Nt let

An={xeA:|f(x+t)— f(x| <2t* forallte[0,1/n]N(A—x)}.

As A is bounded, f|a, is ¢-Holder continuous for all n € N*. Let
D= {xe A:limsup|f(x+1t) — f)|t™* > 1}.
t—0+

Clearly A\ |Us2; An C D, so it is enough to prove that dim D < «B. Let us fix § > 0 arbitrarily. Then for all x € D there is a
0 < ty < é such that

|[fx+t0) — FoO| >t (41)

Define Iy = [x — ty, x +tx] for all x € D. By Besicovitch’s covering theorem (see [11, Thm. 2.7]) there is a number p € N not
depending on § and countable sets S; C D (i € {1,..., p}) such that

p
DCuUIx and IyNIy=¢ forallx,yeS; x#y. (4.2)

i=1xeS;
Applying (4.1) and (4.2) implies that for alli € {1, ..., p}
S U@ =298 376 <29 3| fett) — F)|F <2%P varf (). (43)
XeS; XeS; XeS;
Eqgs. (4.2) and (4.3) imply that

p
HyP(D) = D" 3" 1*P < p2*F Varf (f).

i=1 xeS§;

As Varf(f) < oo and § > 0 was arbitrary, we obtain that #%#(D) < co. Hence dim D < a8, and the proof is complete. O

Proof of Theorem 1.2. Assume to the contrary that for some ¢ > 0 there is a random set A C [0, 1] such that, with positive
probability, dim A > B8/2 4+ 2¢ and B|a has finite -variation. Let « =1/2 4 ¢/8 > 1/2. Applying Lemma 4.1 we obtain that
there are sets A, C A such that By, is a-Holder continuous for every n € N* and

dim<A\ UAn) 5a;3=§+8. (4.4)

n=1
As « > 1/2 and B|,, are a-Hélder continuous, Theorem 1.1 implies that almost surely dim A, < 1/2 for all n € N, therefore
(4.4) and the countable stability of the Hausdorff dimension yield that dim A < 8/2+ ¢ almost surely. This is a contradiction,
and the proof is complete. O
Theorems 4.2 and 4.3 (with o = %) imply that Theorem 1.2 is sharp for all 8.

Theorem 4.2. (See Lévy’s modulus of continuity, [9], see also [12].) For the linear Brownian motion {B(t): 0 <t < 1}, almost surely,

. [B(t +h) — B(t)
limsup sup ——— =1

h—0+ o<t<i—h +/2hlog(1/h)
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Theorem4.3.Let0 < <1and0< 8 < % be fixed. Then there is a compact set A C [0, 1] such thatdim A =« B andif f:[0,1] —> R
is a function and c € (0, co) such that for all x, y € [0, 1]

1
|fx) = F)] fclx—yl"‘logm, (4.5)

then f|4 has finite B-variation.

Proof. First we construct A. For all n e N let
Vo= 21/ (@p) (n+ 1)—(ﬁ+2)/ﬁ_

We define intervals I;; j, € [0,1] for all n € N and {iy, ..., i} € {0, 1}" by induction. We use the convention {0, 1}9 = {9}.
Let Iy =[0, 1], and if the interval I;, ;, =[u, v] is already defined then let

Iy ipo=[u,u+ypp1] and I i1 =[V — Vg1, V]

Let

o0
A= U [y iy

n=0 (i,...,in)€{0,1}"

Assume that f:[0,1] — R is a function satisfying (4.5). Now we prove that Var® (f|4) < co. As diam Ii, i, = Vn» the defini-
tion of y;, and (4.5) imply that for all n € N and (iy, ..., i) € {0, 1} we have

(diamf(lil...in))ﬁ <(cy¥ logyn”)’g <cap2Mn+1)72, (4.6)

where cy g € (0,00) is a constant depending on «, 8 and c only. For all x,y € A let n(x, y) be the maximal number n
such that x, y € I;,_;, for some (i1, ...,iy) € {0, 1}". If {Xi}:'(:o is a monotone sequence in A and n € N, then the number of
ie{l,...,k} such that n(x;_1, x;) =n is at most 2". Therefore (4.6) implies that

o0 oo
Var? (fla) <Y 2"(cap2 "+ 172 = capn? < c0.
n=0 n=1

Finally, we prove that dim A = o8. The upper bound dimA < «f is obvious, thus we show only the lower bound. In the
construction of A each (n — 1)st-level interval I;, ;, , contains m, =2 nth-level intervals I;, _;, i, which are separated by
gaps of &, = Yu—1 — 2yp. The definition of y; yields that 0 < g, < &, for all n € N* and &, = 2=/ @A)+o™  Applying [4,
Example 4.6] we obtain that:

log(my ---mp_1)
= O 0 = aﬂ’
—log(mpen)

and the proof is complete. O

dim A > liminf
n—oo
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