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We establish some characterizations of the standard imbeddings of hyperbolic spaces in 
the (n + 1)-dimensional Minkowski space Ln+1 with intrinsic and extrinsic properties such 
as the n-dimensional area of the sections cut off by hyperplanes, the (n + 1)-dimensional 
volume of regions between parallel hyperplanes, and the n-dimensional surface area of 
regions between parallel hyperplanes. In the same manner, we give an affirmatively partial 
answer to Question A suggested in [6], which is for the characterization of hyperspheres in 
the (n + 1)-dimensional Euclidean space En+1.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Nous établissons quelques caractérisations des plongements standard d’espaces hyperbo-
liques dans l’espace de Minkowski Ln+1 de dimension n + 1, avec des propriétés 
intrinsèques et extrinsèques comme la surface n-dimensionnelle des sections coupées par 
des hyperplans, le volume en n + 1 dimensions de régions entre des hyperplans parallèles 
et la surface n-dimensionnelle de régions entre des hyperplans parallèles. De la même 
façon, nous donnons une réponse affirmative partielle à la question A suggérée dans [6], 
qui concerne la caractérisation d’hypersphères dans l’espace Euclidien En+1 de dimension 
n + 1.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

We consider the (n + 1)-dimensional Minkowski space Ln+1 = R
n+1
1 with metric ds2 = dx2

1 + · · · + dx2
n − dx2

n+1 for 
x = (x1, · · · , xn+1). Let us denote by Hn(r) ⊂ L

n+1 the spacelike hyperquadric defined by 〈p, p〉 = −r2, pn+1 > 0. Then Hn(r)
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is a Riemannian space form with constant sectional curvature K = − 1
r2 , which is called the standard imbedding of the 

hyperbolic space of curvature K = − 1
r2 , or simply the hyperbolic space.

For a fixed point p ∈ Hn(r), N(p) = −p/r is the timelike unit normal to Hn(r) at p pointing to the concave side of Hn(r). 
If t > 0 is sufficiently small, let us denote by Φt the hyperplane passing through the point p − tN(p), which is parallel to 
the tangent hyperplane Φ0 of Hn(r) at p.

We denote by Ap(t), V p(t) and S p(t) the n-dimensional area of the section in Φt enclosed by Φt ∩ Hn(r), the 
(n + 1)-dimensional volume of the region bounded by the hyperbolic space and the hyperplane Φt , and the n-dimensional 
surface area of the region of Hn(r) between the two hyperplanes Φt and Φ0, respectively.

Then, for sufficiently small t > 0, we have the following properties of the hyperbolic space Hn(r).

Proposition 1. The hyperbolic space Hn(r) satisfies the following conditions:

(V ) : the (n + 1)-dimensional volume V p(t) of the region is independent of the point p,
(A) : the n-dimensional area Ap(t) of the section is independent of the point p,
(S) : the n-dimensional surface area S p(t) of the region is independent of the point p.

Proof. For two points p and q on the hyperbolic space Hn(r), there exists a linear isometry φ : Ln+1 → L
n+1 carrying Hn(r)

isometrically to itself, with φ(p) = q ([10, pp. 113–114]).
If we denote by Φ ′

0 and Φ ′
t the tangent hyperplane of Hn(r) at q and the hyperplane passing through q − tN(q), which 

is parallel to Φ ′
0, respectively, then we also have:

φ
(
N(p)

) = N(q), φ(Φ0) = Φ ′
0, φ(Φt) = Φ ′

t .

These relations complete the proof. �
Conversely, it is natural to ask the following question.

Question 2. Are there any other convex spacelike hypersurfaces in the (n + 1)-dimensional Minkowski space Ln+1 that 
satisfy the above properties?

We will say that a convex spacelike hypersurface in Ln+1 is strictly convex if the shape operator of the hypersurface is 
positive definite with respect to the unit normal N pointing to the concave side.

In this article, we study strictly convex spacelike hypersurfaces M in the (n + 1)-dimensional Minkowski space Ln+1

of which parallel hypersurfaces satisfy the above-mentioned properties. For a constant s, the parallel hypersurface Ms is 
defined by the set consisting of the points p − sN(p), p ∈ M . It is a well-defined hypersurface, provided s is small enough.

We assume that for each s ∈ (−ε, ε), ε > 0, the parallel hypersurface Ms is strictly convex. Then, for a fixed point 
p ∈ Ms ⊂ L

n+1, Ap(t), V p(t) and S p(t) are defined as above.
In Section 3, as a result, we prove the following theorem.

Theorem 3. Let M be a strictly convex spacelike hypersurface in the (n + 1)-dimensional Minkowski space Ln+1. We assume 
that for each s ∈ (−ε, ε), ε > 0, the parallel hypersurface Ms is strictly convex. Suppose that each Ms , s ∈ (−ε, ε) satisfies 
one of the following conditions:

(A) : the n-dimensional area Ap(t) of the section is independent of the point p ∈ Ms ,
(V ) : the (n + 1)-dimensional volume V p(t) of the region is independent of the point p ∈ Ms ,
(S) : the n-dimensional surface area S p(t) of the region is independent of the point p ∈ Ms .

Then, up to isometries of Ln+1, the hypersurface M is an open part of the hyperbolic space Hn(r).

Conversely, for the hyperbolic space M = Hn(r) and sufficiently small s, the parallel hypersurface Ms is nothing but the 
hyperbolic space Ms = Hn(r + s). Hence, it follows from Proposition 1 that each Ms satisfies the conditions (A), (V ) and (S), 
respectively.

Remark 4. It is well known that the convex and complete hypersurfaces in the Euclidean space with positive constant 
Gauss–Kronecker curvature with respect to the unit normal pointing to the convex side are the hyperspheres [3]. Using this 
fact, the first and second authors established some characterizations of Euclidean hyperspheres [5,6]. On the other hand, 
in the (n + 1)-dimensional Minkowski space Ln+1, there exist a lot of convex and complete spacelike hypersurfaces with 
positive constant Gauss–Kronecker curvature with respect to the unit normal pointing to the concave side [2,4,7].

Finally, if we use the same argument as in the proof of Theorem 3, we are able to give a partial affirmative answer to 
Question A in [6] as follows.
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Theorem 5. Let M be a strictly convex hypersurface in the (n + 1)-dimensional Euclidean space En+1. We assume that for 
each s ∈ (−ε, ε), ε > 0, the parallel hypersurface Ms is strictly convex. Suppose that each Ms , s ∈ (−ε, ε) satisfies one of 
the following conditions:

(A) : the n-dimensional area Ap(t) of the section is independent of the point p ∈ Ms ,
(V ) : the (n + 1)-dimensional volume V p(t) of the region is independent of the point p ∈ Ms ,
(S) : the n-dimensional surface area S p(t) of the region is independent of the point p ∈ Ms .

Then, up to isometries of En+1, the hypersurface M is an open part of the round hypersphere Sn(r).

Throughout this article, all objects are smooth and connected, unless otherwise mentioned.

2. Preliminaries

Suppose that M is a strictly convex spacelike hypersurface in the (n + 1)-dimensional Minkowski space Ln+1 with the 
timelike unit normal N pointing to the concave side.

We may assume that M is locally the graph of a non-negative convex function f : Rn →R. Since M is spacelike, we have 
|∇ f (x)| < 1, where ∇ f denotes the gradient vector of the function f . Hence the unit normal N to M is

N
(
x, f (x)

) = −1

W (x)

(
f1(x), · · · , fn(x),1

) = −1

W (x)

(∇ f (x),1
)
, (2.1)

where f i(x) denotes the partial derivative of f with respect to xi , i = 1, · · · , n and W (x) = (1 − |∇ f (x)|2)1/2.
The volume density dV on the hypersurface M is given by ([1, p. 3])

dV (X1, · · · , Xn) = ∣∣det
(〈Xi, X j〉

)∣∣1/2
, (2.2)

where Xi = (ei, f i(x)), i = 1, · · · , n is a basis for T p M , p = (x, f (x)) and e1, · · · , en the natural basis of Rn . It is straightfor-
ward to show that:

det
(〈Xi, X j〉

) = det

⎛
⎜⎜⎜⎝

1 − f 2
1 − f1 f2 · · · − f1 fn

− f2 f1 1 − f 2
2 · · · − f2 fn

...
...

...

− fn f1 − fn f2 · · · 1 − f 2
n

⎞
⎟⎟⎟⎠ = 1 − |∇ f |2 > 0. (2.3)

The shape operator L : T p M → T p M with respect to the unit normal N is defined by

L(X) = −∇̄X N, (2.4)

where ∇̄ is the usual connection on Ln+1. We denote by k1, · · · , kn the eigenvalues of the shape operator L, which are called 
the principal curvatures of M at p with respect to the unit normal N . The Gauss–Kronecker curvature K is then defined by 
K = k1 · · ·kn . Hence we get [7]:

K = det(L) = det( f i j)

W (x)n+2
. (2.5)

For spacelike surfaces in L3, the intrinsic Gauss curvature is −K .
Since M is a strictly convex spacelike hypersurface in the (n + 1)-dimensional Minkowski space Ln+1 with respect to the 

timelike unit normal N pointing to the concave side, for each i = 1, 2, · · · , n, we have ki > 0.
For a fixed point p ∈ M and a sufficiently small t > 0, consider the hyperplane Φt passing through the point p − tN(p), 

which is parallel to the tangent hyperplane Φ0 of M at p. Let us again denote by Ap(t), V p(t) and S p(t) the n-dimensional 
area of the section in Φt enclosed by Φt ∩ M , the (n + 1)-dimensional volume of the region bounded by the hypersurface 
and the hyperplane Φt and the n-dimensional surface area of the region of M between the two hyperplanes Φt and Φ0, 
respectively.

Now, using a Lorentzian motion of Ln+1, we may introduce a coordinate system (x1, x2, · · · , xn+1) of Ln+1 with the 
origin p, the tangent space of M at p is the hyperplane xn+1 = 0. Hence, M is locally the graph of a non-negative convex 
function f : Rn → R satisfying f (0) = 0 and ∇ f (0) = 0.

Thus, from N(p) = −(0, · · · , 0, 1), for a sufficiently small t > 0 we obtain

Ap(t) =
¨

f (x)<t

1 dx, (2.6)

and
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V p(t) =
¨

f (x)<t

{
t − f (x)

}
dx, (2.7)

where x = (x1, x2, · · · , xn) and dx = dx1dx2 · · ·dxn . It follows from (2.2) and (2.3) that

S p(t) =
¨

f (x)<t

√
1 − ∣∣∇ f (x)

∣∣2
dx. (2.8)

Note that we also have

V p(t) =
¨

f (x)<t

{
t − f (x)

}
dx

=
tˆ

z=0

{ ¨

f (x)<z

1 dx

}
dz. (2.9)

Together with the fundamental theorem of calculus, Eq. (2.6) shows that

V ′
p(t) =

¨

f (x)<t

1 dx = Ap(t). (2.10)

First of all, we prove (cf. [5,6]) the following lemma.

Lemma 6. Suppose that M is a strictly convex spacelike hypersurface in the (n + 1)-dimensional Minkowski space Ln+1. For 
the unit normal N pointing to the concave side of M , we have the following:

1) lim
t→0

1

(
√

t)n
Ap(t) = (

√
2)nωn√
K (p)

, (2.11)

2) lim
t→0

1

(
√

t)n+2
V p(t) = (

√
2)n+2ωn

(n + 2)
√

K (p)
, (2.12)

3) lim
t→0

1

(
√

t)n
S p(t) = (

√
2)nωn√
K (p)

, (2.13)

where ωn denotes the volume of the n-dimensional unit ball.

Proof. Let us denote by x the column vector (x1, x2, · · · , xn)t. Then, we have from Taylor’s formula of f (x) as follows:

f (x) = xt Ax + f3(x), (2.14)

where A is a symmetric n × n matrix and f3(x) is an O (|x|3) function. Then, the Hessian matrix of f at the origin is given 
by ( f i j(0)) = 2A. Hence, for the unit normal N to M we have from (2.5)

K (p) = det
(

f i j(0)
) = 2n det A. (2.15)

By the assumption, every eigenvalue of A is positive and hence, there exists a nonsingular symmetric matrix B satisfying

A = Bt B, (2.16)

where Bt denotes the transpose of B . Therefore, we get:

f (x) = |Bx|2 + f3(x). (2.17)

We consider the decomposition of S p(t) as follows:

Ap(t) = S p(t) + T p(t), (2.18)

where

Ap(t) =
¨

1 dx (2.6)
f (x)<t
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and

T p(t) =
¨

f (x)<t

(
1 −

√
1 − |∇ f |2) dx. (2.19)

Now, the proof of Lemma 8 in [6] shows that (2.11) and (2.12) hold. Hence, it remains to prove (2.13). In order to prove 
(2.13), it suffices to show that

lim
t→0

1

(
√

t)n
T p(t) = 0. (2.20)

Note that the following inequality holds

0 ≤ T p(t) ≤
¨

f (x)<t

∣∣∇ f (x)
∣∣2

dx. (2.21)

The function f satisfies
∣∣∇ f (x)

∣∣2 = 4|Ax|2 + h2(x), (2.22)

where h2(x) is an O (|x|2) function. Thus, there exists a positive constant C satisfying in a neighborhood of the origin
∣∣∇ f (x)

∣∣2 ≤ C |x|2. (2.23)

In the same argument as in the proof of Lemma 8 in [6], putting t = ε2 and x = ε y, it follows from (2.21) and (2.23)
that

0 ≤ 1

(
√

t)n
T p(t) ≤ Cε2

¨

|B y|2+εg3(y)<1

|y|2 dy. (2.24)

Since the integral of the right-hand side in (2.24) tends toward a constant as ε → 0, by letting t → 0 in (2.24), we get (2.20). 
This completes the proof. �
3. Proofs of Theorems 3 and 5

In this section, first of all, we prove Theorem 3.
Let M be a strictly convex spacelike hypersurface in the (n + 1)-dimensional Minkowski space Ln+1. We assume that for 

each s ∈ (−ε, ε), ε > 0, the parallel hypersurface Ms is strictly convex.
Suppose that each Ms , s ∈ (−ε, ε) satisfies one of the three conditions (V ), (A) and (S). Then Lemma 6 shows that for 

each s ∈ (−ε, ε), the Gauss–Kronecker curvature K (s) of the parallel hypersurface Ms is a positive constant.
Now, we prove the following lemma (cf. [8]).

Lemma 7. Suppose that M is a strictly convex spacelike hypersurface in the (n + 1)-dimensional Minkowski space Ln+1. 
Then the following statements are equivalent.

1) Each parallel hypersurface Ms has constant Gauss–Kronecker curvature.
2) The hypersurface M has constant principal curvatures.

Proof. At a fixed point p ∈ M , let k1(p), · · · , kn(p) denote the principal curvatures with principal vectors X1, · · · , Xn , which 
are orthonormal with respect to the metric g of M . Note that the parallel hypersurface Ms is defined by p − sN(p), p ∈ M , 
which is a hypersurface for sufficiently small s.

With respect to the unit normal N , the shape operator Ls of Ms is given by ([8])

Ls = (I − sL)−1L, (3.1)

where L and I denote the shape operator of M and the identity operator, respectively. Furthermore, we have

Ls
(

Xi(s)
) = ki

1 − ski
Xi(s), (3.2)

where {Xi(s)}n
i=1 are orthonormal frame with respect to the metric gs of Ms given by

Xi(s) = ki Xi . (3.3)

1 − ski
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Suppose that each parallel hypersurface Ms has constant Gauss–Kronecker curvature K (s). It follows from (3.2) that

n∏
i=1

ki(p)

1 − ski(p)
= K (s). (3.4)

Hence, we have

n∑
i=1

ln ki(p) −
n∑

i=1

ln
(
1 − ski(p)

) = ln K (s). (3.5)

By differentiating (3.5) with respect to s, we get:

n∑
i=1

ki(p)

1 − ski(p)
= K ′(s)

K (s)
, (3.6)

which we denote by k(s). Evaluating k(0), k′(0), · · · , k(n−1)(0), we obtain:

n∑
i=1

ki(p) = k(0),

n∑
i=1

ki(p)2 = k′(0), · · · ,
n∑

i=1

ki(p)n = k(n−1)(0). (3.7)

These relations show that each principal curvature ki(p) of M is a constant.
The converse is obvious. �
It follows from Lemma 7 that each principal curvature ki(p) of M is constant, that is, M is isoparametric. Hence M has 

at most two distinct constant principal curvatures ([8,9]). Furthermore, if M has two distinct constant principal curvatures, 
then one of them is zero, which is a contradiction. Thus, we see that the constant principal curvatures are positive and 
equal to each other. That is, M is totally umbilic, but not totally geodesic. Therefore, it is an open part of the hyperbolic 
space Hn(r) ([10, pp. 116–117]).

This completes the proof of Theorem 3.
Finally, we prove Theorem 5.
Let M be a strictly convex hypersurface in the (n + 1)-dimensional Euclidean space En+1 with respect to the unit normal 

N pointing to the convex side. We assume that for each s ∈ (−ε, ε), ε > 0, the parallel hypersurface Ms defined by p + sN(p)

for p ∈ M is strictly convex.
Suppose that each Ms , s ∈ (−ε, ε) satisfies one of the conditions (V ), (A) and (S). Then, Lemma 8 in [6] shows that 

for each s ∈ (−ε, ε), the Gauss–Kronecker curvature K (s) of the parallel hypersurface Ms is a positive constant. Then, we 
can use Lemma 7 because it holds for hypersurfaces in an Euclidean space. Hence, the hypersurface M is isoparametric. 
With the same argument as above, we see that M is totally umbilic, but not totally geodesic. This completes the proof of 
Theorem 5.
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