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RESUME

Les méthodes numériques basées sur la discrétisation de pas de temps et I'estimation
d'espérances conditionnelles pour la résolution d'équations différentielles stochastiques
rétrogrades (BSDEs) ont fait I'objet d’études récentes, en particulier pour leurs applications
dans le domaine de la finance. Nous proposons ici une technique basée sur les variables
de contrdle permettant de réduire I'erreur dans la simulation des estimateurs d’espérance
conditionnelle. Ces modifications peuvent étre adaptées facilement aux algorithmes connus
pour augmenter leur efficacité, avec sensiblement le méme temps de calcul.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Several approaches for solving backward stochastic differential equations (BSDEs) have been considered in the literature
(see for instance [5,7] and references therein). One type of numerical scheme is based on time discretization and estimating
conditional expectations (see e.g. [8,6,2-4]). Since these conditional expectations cannot be evaluated explicitly, methods
such as Least Squares Monte-Carlo or kernel regression are used. We suggest here a simple modification to these methods
in order to reduce the simulation error of the conditional expectation estimates.

The main idea is captured in the following elementary observation. Let W; be a standard Brownian motion and f a suf-
ficiently smooth function satisfying, e.g., a polynomial growth condition. Integration by parts with dominated convergence
theorem then shows that:
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These formulas suggest an approach for estimating derivatives by Monte-Carlo. Unfortunately, replacing expectations by em-
pirical averages leads to poor convergence when At is small. A simple Taylor expansion argument shows that the sample
variances are f(x)2At~1 4+ O(1) in (1) and 2f(x)2At=% + O(At~1) in (2) which blow up as At — 0, thus leading to a
large standard error in the estimates. This problem can be avoided by using estimators based on the equivalent formu-

las:
}, (1)
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obtained by subtracting the first-order Taylor terms from f(x+ W) in order to make the numerator and the denominator
of the same order in At while keeping the expectation unchanged. This leads to sample variances 2f’(x)? + O(At) and
%f”(x)2 + O(At) which, to the leading order, do not depend on At and thus allow much smaller values of At to be
used.

2. Application to the numerical solution of BSDEs

To keep the notation simple, we consider the one-dimensional case; the ideas extend readily to multiple dimensions.
Suppose that we are given a fully non-linear parabolic PDE in [0, T] x R:

U + Lu = f(t, X, U, Uy, Uxy), ux,T)=g(x) 3)

where L is the generator of a diffusion dX; = b(t, X;)dt + o (t, X;) dW; with a fixed initial value Xy = x. If the PDE has
a sufficiently smooth solution, then it follows by Ito’s Lemma that the four processes Y: = u(X;,t), Zy = ux(X;,t), It =
Uxx(Xt, t), At = (Uxe + Luy)(X¢, t) satisfy the second-order BSDE

dYe = f(t, X¢, Ye, Ze, It dt + o (¢, Xp) Z AWy, dZ; = Acdt o (t, Xe) I dW, (4)

with the terminal condition Y1 = g(Xt). Conversely, if we can solve for Yq via the BSDE approach, we can find the numerical
solution of the PDE (3) at a given point (x, 0).
We consider two well-known numerical schemes for solving second-order BSDEs:

- Cheridito et al. [3]:

YN =g(Xn), Zn =g (Xn),
Yn—] = IEn—l [Yn] - f(tﬂ—lv Xn—] s Yn—] s Zn—] s Fn—l)At,
AW, _
Zn_q = En_1 [yn n 1], 1<n<N (5)
On-1 At
1 AWn_1q
Ih1= En_1| Z N
n—1 On_1 n 1|: n At j|
- Fahim et al. [4]:
YN =g(Xn),
Y1 = IEn—l [Yn] — f(tn—1 s Xn—1,Yn-1,Zn-1, Fn—l)AL
AW, _
Zn1= Enq |:Yn nl :|, 1<n<N (6)
n—1 At
1 (AWp_1)? — At
1= Epn1|Yp———— |,
n—1 0_1127] n 1|: n At2

Subscripts indicate evaluations at time t, = nAt, Ey[-] = E[- | Xn], AWp—1 = Wy, — W1 and oy = o (tp, X;). Since Z,
and I}, are approximations to uy(Xp,t;) and uxx(Xp,t;), we see that the expressions of Z,_1 and I},_1 are essentially
the formulas (1) and (2). These formulas produce poor results for small time steps (see [7]). We suggest the following
modifications based on the formulas (1*) and (2*):
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We estimated the derivatives of f(x) = exp(—x2) at the point x = 0.2 using both the naive estimate and the new estimate. Each estimate was computed
10000 times using time step At =0.001 and N = 100000.

Estimator Mean empirical Mean exact Std empirical Std exact Range (max-min)
naive /(0 -0.1941 ~0.1960 0.0991 0.0980 0.7236
new /(0 ~0.1958 ~0.1960 0.0009 0.0009 0.0070
naive f7(x) ~0.9631 ~0.9410 4.3782 4.3836 32.576
new f7(x)" ~0.9395 ~0.9410 0.0129 0.0128 0.0948
- Modified scheme for Cheridito et al.:
1 i AW
Zp_1= En—1 (Yn —En—1 [Yn]) At )
-1
" - 1<n<N. 7)
1 AWy
Fn—l = IEn—l (Zn - Zn—l) s
On—1 L At
- Modified scheme for Fahim et al.:
1 i AW
Zn_1= En_1| (Yn — Ep—1[Y; s
n—1 On1 n 1_( n n—1l n]) IN; ]
- n<N. 8
1 (AW,_1)% — At S (8)
I = Z_]Enfl (Yn —En—1[Yn] — 001 anlAanl)T >
ol L

These differ from the original ones only in the way that we have subtracted approximations of the first-order Taylor expan-
sion terms in the expressions of Z,_q and I;,—1. Note that the correction terms are already computed at each step so the
modifications do not add any significant computational cost.

3. Numerical examples

Example 1 (Simple estimator). We estimate the expectations described in the first section using the average of N samples.
The naive estimators of (1) and (2) with their leading order standard errors are

= [f )]
! Zn AtZy), d~ ——, 9
frx = W_Z fx+~At st~ — = 9)
N
S V2| f ()]
" - l tZ, td~ ————— 10
@)= ; )fx+AtZy), s TN (10)
where Z, are independent standard normal random variables. Respectively, for (1*) and (2*) we have
N
.1 _ Y2f W)
fr@) =N—mr§zn(f(x+\/mzn)—f(x)), sthT, (11)
N "
P = 3(22 = 1)(Fex+ VAEZn) — F0) — VALZA (), std~\/ 'f (X)' (12)

NAt
n=1

In particular, if N is held constant and the time step At gets smaller, the naive estimates diverge whereas the standard
errors of the new estimates do not to depend on At. For example, if we chose At =0.01 we would need 10000 times
more samples to get the same standard error for the naive estimate of f” than what we would get by just using the new
estimate. See Table 1.

Example 2 (Non-linear PDE). We used the four different BSDE schemes to solve the PDE

1
U+ = 2% (U)X Uy = 0, (x—90)" —

2
where X(x) = ominlx<0(X) + Omax1x>0(x). The value u(100,0) corresponds to the maximum value of the call spread
Cgo — C110 in the uncertain volatility model (see [1,7]) with spot price 100, zero interest rate, 1 year time to maturity
and volatility band [omin, Omax] = [0.1, 0.2].

u(x, T) = (x—110)" (13)
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Table 2

The results given by different methods with different time steps. The correct price is 11.20 and the asterisk means that the computation diverged.
Scheme \ Time step At 1/10 1/20 1/40 1/80 1/160 1/320 1/640
Cheridito et al. 10.98 11.13 11.26 32.53 * * *
Fahim et al. 10.98 11.18 11.68 18.48 41.12 * *
Modified Cheridito et al. 10.97 11.07 11.18 11.22 11.21 11.21 11.27
Modified Fahim et al. 10.99 11.14 11.18 11.21 11.26 11.29 11.65

We generated 100000 paths of the forward diffusion (geometric Brownian motion with zero drift and volatility 0.15).

Conditional expectations were estimated using basis projections on 20 exponentials e~¥*/100 centered equidistantly between
the minimum and maximum values of the sample paths X;, at each t, =nAt. The experiments were repeated with different
time steps At =(10-2)~1,i=0,1,...,6.

The results are shown in Table 2. The original schemes only give sensible answers for large values of At and diverge as
At gets smaller. This is to be expected since the variances of the sample points used in the estimation of the conditional
expectations blow up as At — 0. The modified versions behave much better for smaller time steps although eventually
show divergence for small enough At. A larger number of sample paths would probably allow even smaller time steps to
be used.
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