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Let G be a split simple group of type G2 over a field k, and let g be its Lie algebra.
Answering a question of J.-L. Colliot-Thélène, B. Kunyavskiı̆, V.L. Popov, and Z. Reichstein,
we show that the function field k(g) is generated by algebraically independent elements
over the field of adjoint invariants k(g)G .
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r é s u m é

Soit G un groupe algébrique simple et déployé de type G2 sur un corps k. Soit g son
algèbre de Lie. On démontre que le corps des fonctions k(g) est transcendant pur sur le
corps k(g)G des invariants adjoints. Ceci répond par l’affirmative à une question posée par
J.-L. Colliot-Thélène, B. Kunyavskiı̆, V.L. Popov et Z. Reichstein.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let G be a split connected reductive group over a field k and let g be the Lie algebra of G . We will be interested in the
following natural question:

Question 1. Is the function field k(g) purely transcendental over the field of invariants k(g)G for the adjoint action of G on g?
That is, can k(g) be generated over k(g)G by algebraically independent elements?

In [5], the authors reduce this question to the case where G is simple, and show that in the case of simple groups,
the answer is affirmative for split groups of types An and Cn , and negative for all other types except possibly for G2. The
standing assumption in [5] is that char(k) = 0, but here we work in arbitrary characteristic.

The purpose of this note is to settle Question 1 for the remaining case G = G2.
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Theorem 2. Let k be an arbitrary field and G be the simple split k-group of type G2 . Then k(g) is purely transcendental over k(g)G .

Under the same hypothesis, and also assuming char(k) = 0, it follows from Theorem 2 and [5, Theorem 4.10] that the
field extension k(G)/k(G)G is also purely transcendental, where G acts on itself by conjugation.

Apart from settling the last case left open in [5], we were motivated by the (still mysterious) connection between
Question 1 and the Gelfand–Kirillov (GK) conjecture [9]. In this context, char(k) = 0. A. Premet [11] recently showed that
the GK conjecture fails for simple Lie algebras of any type other than An , Cn and G2. His paper relies on the negative results
of [5] and their characteristic p analogues ([11], see also [5, Theorem 6.3]). It is not known whether a positive answer to
Question 1 for g implies the GK conjecture for g. The GK conjecture has been proved for algebras of type An (see [9]), but
remains open for types Cn and G2. While Theorem 2 does not settle the GK conjecture for type G2, it puts the remaining
two open cases—for algebras of type Cn and G2—on equal footing vis-à-vis Question 1.

2. Twisting

Temporarily, let W be a linear algebraic group over a field k. (In the sequel, W will be the Weyl group of G; in particular,
it will be finite and smooth.) We refer to [7, Section 3], [8, Section 2], or [5, Section 2] for details about the following facts.

Let X be a quasi-projective variety with a (right) W -action defined over k, and let ζ be a (left) W -torsor over k. The
diagonal left action of W on X ×Spec(k) ζ (by g.(x, z) = (xg−1, gz)) makes X ×Spec(k) ζ into the total space of a W -torsor
X ×Spec(k) ζ → B . The base space B of this torsor is usually called the twist of X by ζ . We denote it by ζ X .

It is easy to see that if ζ is trivial then ζ X is k-isomorphic to X . Hence, ζ X is a k-form of X , i.e., X and ζ X become
isomorphic over an algebraic closure of k.

The twisting construction is functorial in X : a W -equivariant morphism X → Y (or rational map X ��� Y ) induces a
k-morphism ζ X → ζ Y (resp., rational map ζ X ��� ζ Y ).

3. The split group of type G2

We fix notation and briefly review the basic facts, referring to [13], [1], or [2] for more details. Over any field k, a
simple split group G of type G2 has a faithful seven-dimensional representation V . Following [2, (3.11)], one can fix a basis
f1, . . . , f7, with dual basis X1, . . . , X7, so that G preserves the nonsingular quadratic norm N = X1 X7 + X2 X6 + X3 X5 + X2

4 .
(See [1, §6.1] for the case char(k) = 2. In this case V is not irreducible, since the subspace spanned by f4 is invariant; the
quotient V /(k · f4) is the minimal irreducible representation. However, irreducibility will not be necessary in our context.)
The corresponding embedding G ↪→ GL7 yields a split maximal torus and Borel subgroup T ⊂ B ⊂ G , by intersecting with
diagonal and upper-triangular matrices. Explicitly, the maximal torus is:

T = diag
(
t1, t2, t1t−1

2 ,1, t−1
1 t2, t−1

2 , t−1
1

); (1)

cf. [2, Lemma 3.13].
The Weyl group W = N(T )/T is isomorphic to the dihedral group with 12 elements, and the surjection N(T ) → W

splits. The inclusion G ↪→ GL7 thus gives rise to an inclusion N(T ) = T � W ↪→ D � S7, where D ⊂ GL7 is the subgroup of
diagonal matrices. On the level of the dual basis X1, . . . , X7, we obtain an isomorphism W ∼= S3 × S2 realized as follows: S3
permutes the three ordered pairs (X1, X7), (X6, X2), and (X5, X3), and S2 exchanges the two ordered triples (X1, X5, X6)

and (X7, X3, X2). The variable X4 is fixed by W . For details, see [2, §A.3].
The subgroup P ⊂ G stabilizing the isotropic line spanned by f1 is a maximal standard parabolic, and the corresponding

homogeneous space P\G is isomorphic to the five-dimensional quadric Q⊂ P(V ) defined by the vanishing of the norm, i.e.,
by the equation:

X1 X7 + X2 X6 + X3 X5 + X2
4 = 0. (2)

Note that the quadric Q is endowed with an action of T . An easy tangent space computation shows that P is smooth
regardless of the characteristic of k.

Lemma 3. The group P is special, i.e., H1(l, P ) = {1} for every field extension l/k. Moreover, P is rational, as a variety over k.

Proof. Since the split group of type G2 is defined over the prime field, we may replace k by the prime field for the purpose
of proving this lemma, and in particular, we may assume k is perfect. We begin by briefly recalling a construction of
Chevalley [4]. The isotropic line E1 ⊂ V stabilized by P is spanned by f1, and P also preserves an isotropic 3-space E3
spanned by f1, f2, f3; see, e.g., [2, §2.2]. There is a corresponding map P → GL(E3/E1) ∼= GL2, which is a split surjection
thanks to the block matrix described in [10, p. 13] as the image of “B” in GL7. The kernel is unipotent, and we have a split
exact sequence corresponding to the Levi decomposition:

1 → Ru(P ) → P → GL2 → 1. (3)
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Combining the exact sequence in cohomology induced by (3) with the fact that both Ru(P ) and GL2 are special (see [12,
pp. 122 and 128]), shows that P is special.

Since P is isomorphic to Ru(P ) × GL2 as a variety over k, and P is smooth, so is Ru(P ). A smooth connected unipotent
group over a perfect field is rational [6, IV, §2(3.10)]; therefore Ru(P ) is k-rational, and so is P . �
4. Proof of Theorem 2

Keep the notation of the previous section. By a W -model (of k(Q)T ), we mean a quasi-projective k-variety Y , endowed
with a right action of W , together with a dominant W -equivariant k-rational map Q ��� Y which, on the level of function
fields, identifies k(Y ) with k(Q)T . Such a map Q ��� Y is called a (W -equivariant) rational quotient map. A W -model is
unique up to a W -equivariant birational isomorphism; we will construct an explicit one below.

We reduce Theorem 2 to a statement about rationality of a twisted W -model, in two steps. The first holds for general
split connected semisimple groups G .

Proposition 4. Let G be a split connected semisimple group over k, with split maximal k-torus T . Let K = k(t)W , L = k(t), and let
ζ be the W -torsor corresponding to the field extension L/K . If the twisted variety ζ (G K /T K ) is rational over K , then k(g) is purely
transcendental over k(g)G .

Proof. Consider the (G × W )-equivariant morphism:

f : G/T ×Spec(k) t→ g

given by (a, t) �→ Ad(a)t , where t is the Lie algebra of T , a ∈ G/T is the class of a ∈ G , modulo T . Here G acts on G/T × t

by translations on the first factor (and trivially on t), and via the adjoint representation on g. The Weyl group W naturally
acts on t and G/T (on the right), diagonally on G/T × t, and trivially on g.

The image of f contains the semisimple locus in g, so f is dominant and induces an inclusion f ∗: k(g) ↪→ k(G/T × t).
Clearly f ∗ k(g) ⊂ k(G/T × t)W . We will show that in fact:

f ∗k(g) = k(G/T × t)W . (4)

Write k for an algebraic closure of k, and note that the preimage of a k-point of g in general position is a single W -orbit
in (G/T × t)k . To establish (4), it remains to check that f is smooth at a general point (g, x) of G/T × t. (In particular,
when char(k) = 0 nothing more is needed.) To carry out this calculation, we may assume without loss of generality that
k is algebraically closed and (since f is G-equivariant) g = 1. Since dim(G/T × t) = dim(g), it suffices to show that the
differential:

d f : T(1,x)(G/T × t) → Tx(g)

is surjective, for any regular semisimple element x ∈ t. Equivalently, we want to show that [x,g] + t = g. Since x is regular,
we have dim([x,g])+dim t = dimg. Thus it remains to show that [x,g]∩ t= 0. To see this, suppose [x, y] ∈ t for some y ∈ g.
Since x is semisimple, we can write y = ∑r

i=1 yλi , where yλ is an eigenvector for ad(x) with eigenvalue λ, and λ1, . . . , λr

are distinct. Then [x, y] = ∑r
i=1 λi yλi ∈ t is an eigenvector for ad(x) with eigenvalue 0. Remembering that eigenvectors of

ad(x) with distinct eigenvalues are linearly independent, we conclude that [x, y] = 0. This completes the proof of (4).
It is easy to see k(G/T × t)G×W = k(t)W . Summarizing, f ∗ induces a diagram:

k(G/T ×Spec(k) t)
W k(g)

∼

k(t)W k(g)G ,
∼

where the top row is the G-equivariant isomorphism (4), and the bottom row is obtained from the top by taking
G-invariants. Note that:

k(G/T ×Spec(k) t) 	 K
(
(G/T )K ×Spec(K ) Spec L

)
,

where 	 denotes a G-equivariant isomorphism of fields. (Recall that G acts trivially on t and hence also on L and K .)
Thus the field extension on the left side of our diagram can be rewritten as K (ζ (G K /T K ))/K , where ζ is the W -torsor
Spec(L) → Spec(K ). By assumption, this field extension is purely transcendental; the diagram shows it is isomorphic to
k(g)/k(g)G . �

For the second reduction, we return to the assumptions of Section 3.
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Proposition 5. Let G be a split simple group of type G2 , with maximal torus T and Weyl group W , and let Q be the quadric defined in
Section 3. Suppose that for a given W -model Y of k(Q)T , and for some W -torsor ζ over some field K/k, the twisted variety ζ (Y K ) is
rational over K . Then the twisted variety ζ (G K /T K ) is rational over K .

Proof. For the purpose of this proof, we may view K as a new base field and replace it with k.
We claim that the left action of P on G/T is generically free. Since G has trivial center, the (characteristic-free) argument

at the beginning of the proof of [5, Lemma 9.1] shows that in order to establish this claim it suffices to show that the right
T -action on Q= P\G is generically free. The latter action, given by restricting the linear action (1) of T on P

6 to the quadric
Q given by (2), is clearly generically free.

Let Y be a W -model. The W -equivariant rational map G/T ��� Y induced by the projection G → P\G = Q is a rational
quotient map for the left P -action on G/T ; cf. [5, p. 458]. Since the P -action is generically free, this map is a P -torsor over
the generic point of Y ; see [3, Theorem 4.7]. By the functoriality of the twisting operation, after twisting by a W -torsor ζ ,
we obtain a rational map ζ (G/T ) ��� ζ Y , which is a P -torsor over the generic point of ζ Y . This torsor has a rational section,
since P is special; see Lemma 3. In particular, ζ (G/T ) is k-birationally isomorphic to P × ζ Y . Since P is k-rational (once
again, by Lemma 3), ζ (G/T ) is rational over ζ Y . Since ζ Y is rational over k, we conclude that so is ζ (G/T ), as desired. �

It remains to show that the hypothesis of Proposition 5 holds. As before, we may replace the field K with k. The following
lemma completes the proof of Theorem 2.

Lemma 6. Let Y be a W -model for k(Q )T . The twisted variety ζ Y is rational over k, for every W -torsor ζ over k.

Proof. We begin by constructing an explicit W -model. The affine open subset Qaff = {x1x7 + x2x6 + x3x5 + 1 = 0} ⊂ A
6

(where X4 
= 0) is N(T )-invariant. Here the affine coordinates on A
6 are xi := Xi/X4, for i 
= 4. The field of rational functions

invariant for the T -action on Qaff is k(y1, y2, y3, z1, z2), where the variables

y1 = x1x7, y2 = x2x6, y3 = x3x5, z1 = x1x5x6, and z2 = x2x3x7

are subject to the relations y1 + y2 + y3 +1 = 0 and y1 y2 y3 = z1z2. Thus we may choose as a W -model the affine subvariety
Λ1 of A5 given by these two equations, where W = S2 × S3 acts on the coordinates as follows: S2 permutes z1, z2, and S3
permutes y1, y2, y3. (Recall the W -action defined in Section 3, and note that the field k(Q) is recovered by adjoining the
classes of variables x1 and x2.) We claim that Λ1 is W -equivariantly birationally isomorphic to

Λ2 = {
(Y1 : Y2 : Y3 : Z0 : Z1 : Z2) : Y1 + Y2 + Y3 + Z0 = 0 and Y1Y2Y3 = Z1 Z2 Z0

} ⊂ P
5,

Λ3 = {
(Y1 : Y2 : Y3 : Z1 : Z2) : Y1Y2Y3 + (Y1 + Y2 + Y3)Z1 Z2 = 0

} ⊂ P
4, and

Λ4 = {
(Y1 : Y2 : Y3 : Z1 : Z2) : Z1 Z2 + Y2Y3 + Y1Y3 + Y1Y2 = 0

} ⊂ P
4,

where W acts on the projective coordinates Y1, Y2, Y3, Z1, Z2, Z0 as follows: S2 permutes Z1, Z2, S3 permutes Y1, Y2,
Y3, and every element of W fixes Z0. Note that Λ2 ⊂ P

5 is the projective closure of Λ1 ⊂ A
5; hence, using 	 to denote

W -equivariant birational equivalence, we have Λ1 	 Λ2. The isomorphism Λ2 	 Λ3 is obtained by eliminating Z0 from
the system of equations defining Λ2. Finally, the isomorphism Λ3 	 Λ4 comes from the Cremona transformation P

4 ��� P
4

given by Yi → 1/Yi and Z j → 1/Z j for i = 1,2,3 and j = 1,2.
Let ζ be a W -torsor over k. It remains to be shown that ζ Λ4 is k-rational. Since Λ4 is a W -equivariant quadric hy-

persurface in P
4, and the W -action on P

4 is induced by a linear representation W → GL5, Hilbert’s Theorem 90 tells us
that ζ

P
4 is k-isomorphic to P

4, and ζ Λ4 is isomorphic to a quadric hypersurface in P
4 defined over k; see [7, Lemma

10.1]. It is easily checked that Λ4 is smooth over k, and therefore so is ζ Λ4. The zero-cycle of degree 3 given by
(1 : 0 : 0 : 0 : 0) + (0 : 1 : 0 : 0 : 0) + (0 : 0 : 1 : 0 : 0) in Λ4 is W -invariant, so it defines a zero-cycle of degree 3 in ζ Λ4.
By Springer’s theorem, the smooth quadric ζ Λ4 has a k-rational point, hence is k-rational. �
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