EI SEVIER

Contents lists available at SciVerse ScienceDirect

C. R. Acad. Sci. Paris. Ser. I

www.sciencedirect.com

Théorie des nombres

Formes modulaires modulo 2 : structure de l'algèbre de Hecke

Modular forms mod 2: Structure of the Hecke ring

Jean-Louis Nicolas a, Jean-Pierre Serre b

INFO ARTICLE

Historique de l'article : Reçu et accepté le 26 mars 2012 Disponible sur Internet le 27 avril 2012

Présenté par Jean-Pierre Serre

RÉSUMÉ

Nous complétons une Note antérieure en donnant la structure de l'algèbre de Hecke relative aux formes modulaires modulo 2 de niveau 1 : elle est isomorphe à l'algèbre de séries formelles $\mathbf{F}_2[[x, y]]$, où $x = T_3$ et $y = T_5$.

© 2012 Académie des sciences. Publié par Elsevier Masson SAS. Tous droits réservés.

ABSTRACT

We show that the Hecke algebra for modular forms mod 2 of level 1 is isomorphic to the power series ring $\mathbf{F}_2[[x,y]]$, where $x = T_3$ and $y = T_5$.

© 2012 Académie des sciences. Publié par Elsevier Masson SAS. Tous droits réservés.

1. Notations

Nous conservons les notations de la Note précédente [2]. En particulier, nous notons Δ l'élément de $\mathbf{F}_2[[q]]$ défini par :

$$\Delta = \sum_{n=1}^{\infty} \tau(n) q^n = \sum_{m=1}^{\infty} q^{(2m+1)^2},$$

et \mathcal{F} désigne le sous-espace vectoriel de $\mathbf{F}_2[[q]]$ engendré par les puissances impaires de Δ :

$$\mathcal{F} = \langle \Delta, \Delta^3, \Delta^5, \ldots \rangle$$
.

L'espace \mathcal{F} est stable par les opérateurs de Hecke T_p , p premier $\neq 2$.

2. Les espaces $\mathcal{F}(n)$ et les algèbres A(n)

Soit *n* un entier > 0. Soit $\mathcal{F}(n)$ le sous-espace de \mathcal{F} de base $\{\Delta, \Delta^3, \dots, \Delta^{2n-1}\}$. On a dim $\mathcal{F}(n) = n$.

Soit A(n) la \mathbf{F}_2 -sous-algèbre de $\operatorname{End}(\mathcal{F}(n))$ engendrée par \mathbf{F}_2 et les T_p . On a $A(n) = \mathbf{F}_2 \oplus \mathfrak{m}(n)$, où $\mathfrak{m}(n)$ est l'unique idéal maximal de A(n) (à savoir le sous-espace vectoriel de A(n) engendré par les T_p et leurs produits); cet idéal est nilpotent. Soit $\mathcal{F}(n)^*$ le dual de l'espace vectoriel $\mathcal{F}(n)$, muni de sa structure naturelle de A(n)-module, et soit e_n l'élément de $\mathcal{F}(n)^*$ défini par :

$$\langle e_n, \Delta \rangle = 1 \quad \text{et} \quad \langle e_n, \Delta^{2i+1} \rangle = 0 \quad \text{si } 1 \leqslant i < n.$$

Adresses e-mail: jlnicola@in2p3.fr (J.-L. Nicolas), jpserre691@gmail.com (J.-P. Serre). URL: http://math.univ-lyon1.fr/~nicolas/ (J.-L. Nicolas).

^a CNRS, université de Lyon, institut Camille Jordan, Mathématiques, 69622 Villeurbanne cedex, France

^b Collège de France, 3, rue d'Ulm, 75231 Paris cedex 05, France

Si $f = \sum a_m(f)q^m$ est un élément de $\mathcal{F}(n)$, on a :

$$\langle e_n, f \rangle = a_1(f)$$
 et $\langle T_p e_n, f \rangle = a_p(f)$ pour tout p .

On en déduit par récurrence sur r la formule :

$$\langle T_{p_1} \cdots T_{p_r} e_n, f \rangle = a_{p_1 \cdots p_r}(f),$$
 (1)

où les p_i sont des nombres premiers $\neq 2$.

Lemme 2.1. Soit $f \in \mathcal{F}(n)$, $f \neq 0$. Il existe $u \in A(n)$ tel que $\langle e_n, uf \rangle = 1$.

Démonstration. Ecrivons f sous la forme $f=q^m+\sum_{i>m}a_iq^i$ et soit $m=p_1\cdots p_r$ une décomposition de m en produit de nombres premiers. Comme m est impair, il en est de même des p_i . Soit $u=T_{p_1}\cdots T_{p_r}$. La formule (1) montre que $\langle ue_n,f\rangle=1$. Comme $\langle ue_n,f\rangle=\langle e_n,uf\rangle$, cela démontre le lemme. \square

3. Quelques propriétés de $\mathcal{F}(n)$ et de A(n)

Proposition 3.1. Le A(n)-module $\mathcal{F}(n)^*$ est libre de base e_n .

Démonstration. Soit E le sous-A(n)-module de $\mathcal{F}(n)^*$ engendré par l'élément e_n . Si E était distinct de $\mathcal{F}(n)^*$, il existerait $f \in \mathcal{F}(n)$, $f \neq 0$, tel que $\langle ue_n, f \rangle = 0$ pour tout $u \in A(n)$, ce qui contredirait le lemme 1. On a donc $E = \mathcal{F}(n)^*$, ce qui montre que $\mathcal{F}(n)^*$ est engendré par e_n . D'où la proposition. \square

Remarque. Si n > 2, le A(n)-module $\mathcal{F}(n)$ n'est pas un module libre.

Corollaire 3.2. L'application $A(n) \to \mathcal{F}(n)^*$ donnée par $u \mapsto ue_n$ est bijective.

Ce n'est qu'une reformulation de la proposition. Noter que, par dualité, on obtient ainsi une bijection de $\mathcal{F}(n)$ sur le dual $A(n)^*$ de l'espace vectoriel A(n).

Corollaire 3.3. On $a \dim A(n) = n$.

Cela résulte du corollaire précédent et du fait que dim $\mathcal{F}(n) = n$.

Corollaire 3.4. *Le commutant de* A(n) *dans* $End(\mathcal{F}(n))$ *est égal* à A(n).

Par dualité, cela revient à dire que le commutant de A(n) dans $\operatorname{End}(\mathcal{F}(n)^*)$ est égal à A(n), ce qui résulte de la proposition.

Proposition 3.5. L'algèbre A(n) est engendrée par T_3 et T_5 .

Démonstration. Soit A' la sous-algèbre de A(n) engendrée par T_3 et T_5 . C'est une algèbre locale; soit \mathfrak{m}' son idéal maximal. Supposons que $A' \neq A(n)$, i.e. $\dim A' < n$. Le A'-module $\mathcal{F}(n)^*$ n'est pas monogène: sinon, sa dimension serait < n. D'après le lemme de Nakayama, cela signifie que le quotient $V = \mathcal{F}(n)^*/\mathfrak{m}'\mathcal{F}(n)^*$ est de dimension > 1. Par dualité, cela équivaut à dire que le sous-espace de $\mathcal{F}(n)$ annulé par \mathfrak{m}' est de dimension > 1. Il existe donc $f \in \mathcal{F}(n)$, avec $f \neq 0$, Δ , tel que $T_3 f = T_5 f = 0$, ce qui contredit le corollaire 5.3 au théorème 5.1 de [2]. \square

4. Passage à la limite : l'algèbre A

On a $\mathcal{F}(n) \subset \mathcal{F}(n+1)$ et la restriction à $\mathcal{F}(n)$ d'un élément de A(n+1) appartient à A(n). On obtient ainsi un homomorphisme surjectif $A(n+1) \to A(n)$. D'où un système projectif

$$\cdots \rightarrow A(n+1) \rightarrow A(n) \rightarrow \cdots \rightarrow A(2) \rightarrow A(1) = \mathbf{F}_2.$$

Nous noterons A la limite projective de ce système. C'est un anneau local commutatif; il est compact pour la topologie limite projective. Son idéal maximal $\mathfrak m$ est la limite projective des $\mathfrak m(n)$. L'anneau A opère de façon naturelle sur $\mathcal F$.

Soient x et y deux indéterminées. Pour chaque n, il existe un unique homomorphisme $\psi_n : \mathbf{F}_2[x, y] \to A(n)$ tel que $\psi_n(x) = T_3$ et $\psi_n(y) = T_5$. Par passage à la limite, on en déduit un homomorphisme

$$\psi : \mathbf{F}_2[[x, y]] \to A$$

tel que $\psi(x) = T_3$ et $\psi(y) = T_5$.

Théorème 4.1. L'homomorphisme ψ défini ci-dessus est un isomorphisme.

Démonstration. La surjectivité de ψ résulte de la proposition 3.5. Pour prouver l'injectivité, il suffit de montrer que, pour tout élément $u = \sum \lambda_{ij} x^i y^j$ non nul de $\mathbf{F}_2[[x, y]]$, il existe $f \in \mathcal{F}$ tel que :

$$\sum \lambda_{ij} T_3^i T_5^j f = \Delta. \tag{2}$$

[Noter que la somme est une somme finie, car $T_3^i T_5^j f = 0$ quand i+j est assez grand (par exemple $i+j > \deg f$).] Si $\lambda_{00} = 1$ on prend $f = \Delta$. Supposons donc $\lambda_{00} = 0$. Soit Σ l'ensemble des couples (i,j) avec $\lambda_{ij} = 1$; considérons ceux pour lesquels l'entier i + j est minimal, et parmi ceux-là, soit (a, b) le couple où a est maximum. Soit k l'entier impair de code [a, b], au sens de [2, §4.1] et soit $f = \Delta^k$. On montre, en utilisant les propositions 4.3 et 4.4 de [2, §4], que l'on a $T_3^a T_5^b f = \Delta$ et $T_3^i T_5^j f = 0$ pour tout $(i, j) \in \Sigma$ distinct de (a, b). D'où (2). \square

Corollaire 4.2. L'algèbre A est un anneau local régulier de dimension 2. En particulier, c'est un anneau intègre.

A partir de maintenant, nous identifierons les algèbres A et $\mathbf{F}_2[[x, y]]$ au moyen de ψ ; cela nous permettra d'écrire x et y à la place de T_3 et T_5 .

5. Structure des A-modules \mathcal{F} et \mathcal{F}^*

L'algèbre A opère sur \mathcal{F} . Par dualité, elle opère aussi sur le dual \mathcal{F}^* de \mathcal{F} , qui est la limite projective des $\mathcal{F}(n)^*$. Soit $e \in \mathcal{F}^*$ la forme linéaire sur \mathcal{F} définie par :

$$\langle e, f \rangle = a_1(f)$$
 pour tout $f \in \mathcal{F}$, où $a_1(f)$ désigne le coefficient de q dans f .

Théorème 5.1. a) *Le A-module* \mathcal{F}^* *est libre de base e.*

b) Le A-module $\mathcal F$ est isomorphe à l'espace A^*_{cont} des formes linéaires continues sur A.

[Une forme linéaire sur A est continue si et seulement si elle s'annule sur une puissance de l'idéal maximal de A.]

Démonstration. L'assertion a) résulte de la proposition 3.1 par dualité; il en est de même de b) car $A_{\text{conf}}^* = \bigcup_{n \ge 1} A(n)^*$. \square

Corollaire 5.2. Le A-module \mathcal{F} est divisible : pour tout $u \in A$, $u \neq 0$, la multiplication par u est un endomorphisme surjectif de \mathcal{F} . En particulier, les endomorphismes $T_p: \mathcal{F} \to \mathcal{F}$ sont surjectifs.

Démonstration. Par dualité, cela revient à dire que $u: \mathcal{F}^* \to \mathcal{F}^*$ est injectif, ce qui est clair puisque A est un anneau

Remarque. D'après [3], \mathcal{F} est un A-module injectif, à savoir l'enveloppe injective du corps résiduel \mathbf{F}_2 de A. C'est là une propriété plus forte que la propriété de divisibilité.

6. Une base de \mathcal{F} adaptée à T_3 et T_5

Théorème 6.1. Il existe une base $m(a,b)_{a,b\geq 0}$ de \mathcal{F} et une seule qui a les quatre propriétés suivantes :

- i) $m(0,0) = \Delta$.
- ii) $\langle e, m(a, b) \rangle = 0$ *si* a + b > 0.
- iii) $T_3|m(a,b) = \begin{cases} m(a-1,b) & \text{si } a > 0, \\ 0 & \text{si } a = 0 \end{cases}$
- iv) $T_5|m(a,b) = \begin{cases} m(a,b-1) & \text{si } b > 0, \\ 0 & \text{si } b = 0. \end{cases}$

Démonstration. D'après le théorème 5.1, il suffit de prouver le même énoncé pour le A-module A^*_{cont} , et dans ce cas on définit m(a, b) comme la forme linéaaire sur A donnée par :

$$\sum n_{ij}x^iy^j\mapsto n_{ab}.$$

Les propriétés i) à iv) sont évidentes. L'unicité se démontre par récurrence sur a + b. \Box

Exemples (cf. [5]):

$$\begin{split} &m(0,0)=\Delta; & m(1,0)=\Delta^3; & m(0,1)=\Delta^5; \\ &m(2,0)=\Delta^9; & m(1,1)=\Delta^7; & m(0,2)=\Delta^{17}; \\ &m(3,0)=\Delta^{11}; & m(2,1)=\Delta^{13}; & m(1,2)=\Delta^{11}+\Delta^{19}; & m(0,3)=\Delta^{13}+\Delta^{21}; \\ &m(2^r,0)=\Delta^{1+2^{2r+1}}, & m(2^r-1,0)=\Delta^{(1+2^{2r+1})/3} & \text{et} & m(0,2^r)=\Delta^{1+2^{2r+2}}. \end{split}$$

Remarques. 1) L'exposant dominant de m(a,b) au sens de [2, §4.3] est l'entier impair de code (a,b); cela se déduit des résultats énoncés dans [2, §4]. En particulier, l'ordre de nilpotence de m(a,b) est égal à a+b+1.

2) D'après Macaulay ([1], voir aussi [3]) il est commode de noter les m(a,b) comme des monômes $x^{-a}y^{-b}$, avec la convention que $x^{-a}y^{-b} = 0$ si a ou b est < 0. Les formules du théorème 6.1 s'écrivent alors simplement

$$x.x^{-a}y^{-b} = x^{1-a}y^{-b}$$
 et $y.x^{-a}y^{-b} = x^{-a}y^{1-b}$.

7. Développement des T_p comme séries en $x = T_3$ et $y = T_5$

D'après le théorème 4.1, tout T_p peut s'écrire comme une série formelle en $x = T_3$ et $y = T_5$:

$$T_p = \sum_{i+j\geqslant 1} a_{ij}(p)x^i y^j, \quad \text{avec } a_{ij}(p) \in \mathbf{F}_2.$$
(3)

De façon plus précise, on a :

$$T_p \in \mathbf{F}_2[[x^2, y^2]] \quad \text{si } p \equiv 1 \pmod{8},\tag{4}$$

$$T_p \in x.\mathbf{F}_2[[x^2, y^2]] \quad \text{si } p \equiv 3 \pmod{8},\tag{5}$$

$$T_p \in y.\mathbf{F}_2[[x^2, y^2]] \quad \text{si } p \equiv 5 \pmod{8},\tag{6}$$

$$T_p \in xy.\mathbf{F}_2[[x^2, y^2]] \quad \text{si } p \equiv 7 \pmod{8}. \tag{7}$$

Exemples (cf. [5]):

$$T_{17} = x^{2} + y^{2} + x^{2}y^{2} + x^{6} + x^{4}y^{2} + y^{6} + x^{6}y^{2} + x^{4}y^{4} + x^{2}y^{6} + x^{10} + x^{10}y^{2} + x^{6}y^{6} + x^{4}y^{8} + x^{2}y^{10} + \cdots,$$

$$T_{11} = x(1 + x^{2} + y^{2} + x^{4} + x^{2}y^{2} + y^{4} + x^{2}y^{4} + y^{6} + x^{6}y^{2} + x^{8}y^{2} + x^{6}y^{4} + x^{2}y^{8} + y^{10} + x^{10}y^{2} + \cdots),$$

$$T_{13} = y(1 + x^{2} + y^{2} + x^{4} + y^{4} + x^{6} + x^{4}y^{2} + x^{2}y^{4} + x^{6}y^{2} + x^{2}y^{6} + y^{8} + x^{10} + x^{8}y^{2} + x^{6}y^{4} + y^{10} + \cdots),$$

$$T_{7} = xy(1 + x^{2} + x^{4} + x^{2}y^{2} + y^{6} + x^{6}y^{2} + y^{8} + x^{10} + x^{8}y^{2} + x^{6}y^{4} + x^{12} + x^{4}y^{8} + x^{2}y^{10} + \cdots).$$

Dans des cas simples, on peut donner explicitement la valeur du coefficient $a_{ij}(p)$. Par exemple :

$$a_{10}(p) = 1 \iff p \equiv 3 \pmod{8},$$
 (8)

$$a_{01}(p) = 1 \iff p \equiv 5 \pmod{8},\tag{9}$$

$$a_{11}(p) = 1 \iff p \equiv 7 \pmod{16},$$
 (10)

$$a_{20}(p) = 1 \iff p \text{ est de la forme } a^2 + 8b^2 \text{ avec } a, b \in \mathbf{Z}, b \text{ impair},$$
 (11)

$$a_{02}(p) = 1 \iff p \text{ est de la forme } a^2 + 16b^2 \text{ avec } a, b \in \mathbf{Z}, b \text{ impair.}$$
 (12)

Les formules (5) et (8) montrent que, si $p \equiv 3 \pmod 8$, alors T_p est le produit de x par une série inversible en x^2 et y^2 ; en particulier, T_p et T_3 ont le même noyau. Même chose si $p \equiv 5 \pmod 8$ avec x et T_3 remplacé par y et T_5 . On en déduit que l'algèbre A est topologiquement engendrée par n'importe quel couple $(T_p, T_{p'})$ avec $p \equiv 3 \pmod 8$ et $p' \equiv 5 \pmod 8$. Notons aussi que la proposition 4.3 (resp. 4.4) de [2] reste valable si l'on remplace T_3 par T_p avec $p \equiv 3 \pmod 8$ (resp. T_5 par $T_{p'}$ avec $p' \equiv 5 \pmod 8$).

Remarques. 1) Pour i et j fixés, la fonction $p\mapsto a_{ij}(p)$ est frobénienne au sens de $[4,\S3.3]$. De façon plus précise, sa valeur ne dépend que de la substitution de Frobenius de p dans une certaine extension galoisienne finie de \mathbf{Q} , qui est non ramifiée en dehors de $\{2\}$ et dont le groupe de Galois est un 2-groupe. Dans les deux premiers exemples ci-dessus, on peut prendre pour extension galoisienne le corps $\mathbf{Q}(\mu_8)$ des racines huitièmes de l'unité; dans les trois autres, les corps $\mathbf{Q}(\mu_8, \sqrt{uv})$, $\mathbf{Q}(\mu_8, \sqrt{u})$ et $\mathbf{Q}(\mu_8, \sqrt{v})$ avec u = 1 + i et $v = \sqrt{2}$; le premier de ces corps est le corps $\mathbf{Q}(\mu_{16})$ des racines 16-ièmes de l'unité; les deux autres ont des groupes de Galois sur \mathbf{Q} qui sont diédraux d'ordre 8.

2) Si p > 5, on peut se demander si la série donnant T_p peut être un polynôme en x et y. La réponse est «non» : d'après un résultat récent de J. Bellaïche, les T_p sont algébriquement indépendants sur \mathbf{F}_2 .

8. Séries thêta associées à $Q(\sqrt{-2})$

Soient n un entier $\geqslant 1$ et soit $t \in \mathbf{Z}/2^n\mathbf{Z}$. Soit $\theta_{t,n} \in \mathbf{F}_2[[q]]$ la série définie par :

$$\theta_{t,n} = \sum_{\substack{a \text{ impair} > 0}} \sum_{\substack{b \equiv ta \pmod{2^n}}} q^{a^2 + 2b^2}.$$

On a:

$$\theta_{0,n} = \Delta, \qquad \theta_{t,n} = \theta_{-t,n}, \qquad \theta_{2^{n-1},n} = 0, \qquad \theta_{t,n} + \theta_{2^{n-1}-t,n} = \theta_{t,n-1}, \quad \text{et} \quad \theta_{2^{n-2},n} = \Delta^{1+2^{2n-3}} \quad \text{si } n \geqslant 2.$$

Les séries $\theta_{t,n}$ appartiennent à \mathcal{F} . De façon plus précise :

Théorème 8.1. Pour n > 0 fixé, les $\theta_{t,n}$ engendrent le même sous-espace vectoriel de \mathcal{F} que les formes m(a,0) avec $0 \le a < 2^{n-1}$.

[Pour la définition des m(a, b), voir §6.]

Corollaire 8.2. Soit $f = \sum a_n q^n$ un élément de \mathcal{F} . Les propriétés suivantes sont équivalentes :

- 1) $T_5|f=0$.
- 2) La série f est de la forme $\sum \theta_{t_i,n_i}$. 3) $a_n = 1 \Rightarrow n$ est de la forme $a^2 + 2b^2$, avec $a, b \in \mathbf{Z}$.

Exemples (la table des $\theta_{t,n}$ pour $n \le 6$ et $0 \le t \le 2^{n-1}$ est sur le site [5]):

$$\theta_{0,1} = \Delta;$$
 $\theta_{0,2} = \Delta;$
 $\theta_{1,2} = \Delta^3;$
 $\theta_{0,3} = \Delta;$
 $\theta_{1,3} = \Delta^3 + \Delta^{11};$
 $\theta_{2,3} = \Delta^9;$
 $\theta_{3,3} = \Delta^{11}.$

Action des opérateurs de Hecke sur les $\theta_{t,n}$.

Si $p \equiv 5$ ou 7 (mod 8), on a $T_p | \theta_{t,n} = 0$.

Si $p \equiv 1$ ou 3 (mod 8), on écrit p sous la forme $p = a^2 + 2b^2$, avec $a, b \in \mathbb{Z}$; on définit $t(p) \in \mathbb{Z}/2^n\mathbb{Z}$ par $t(p) \equiv$ $b/a \pmod{2^n}$, et l'on pose $t^*(p) = -t(p)$. On a :

$$T_{p}|\theta_{t,n} = \theta_{t \bullet t(p),n} + \theta_{t \bullet t^{*}(p),n}$$

où l'on a noté $x \bullet y$ la loi de composition $x \bullet y$ la loi de composition sur $\mathbf{Z}/2^n\mathbf{Z}$ définie par la formule $x \bullet y = (x+y)/(1-2xy)$. On a en particulier $\theta_{2^{n-1}-t(p),n} = T_p | \Delta^{1+2^{2n-1}}.$

9. Séries thêta associées à Q(i)

Les définitions et les résultats sont essentiellement les mêmes que ceux du §8, à cela près que $a^2 + 2b^2$, T_5 et m(a,0)sont remplacés par $a^2 + 4b^2$, T_3 et m(0, b). De façon plus précise, si t et n sont comme ci-dessus, on définit la série thêta d'indice (t, n) par :

$$\theta'_{t,n} = \sum_{\substack{a \text{ impair} > 0}} \sum_{\substack{b \equiv ta \pmod{2^n}}} q^{a^2 + 4b^2}.$$

$$\theta'_{0,n} = \Delta, \qquad \theta'_{t,n} = \theta'_{-t,n}, \qquad \theta'_{2^{n-1},n} = 0, \qquad \theta'_{t,n} + \theta'_{2^{n-1}-t,n} = \theta'_{t,n-1}, \quad \text{et} \quad \theta'_{2^{n-2},n} = \Delta^{1+2^{2n-2}} \quad \text{si } n \geqslant 2.$$

Théorème 9.1. Pour n > 0 fixé, les $\theta'_{t,n}$ engendrent le même sous-espace vectoriel de \mathcal{F} que les formes m(0,b) avec $0 \le b < 2^{n-1}$.

Corollaire 9.2. Soit $f = \sum a_n q^n$ un élément de \mathcal{F} . Les propriétés suivantes sont équivalentes :

1)
$$T_3|f=0$$
.

¹ Cette loi munit $\mathbf{Z}/2^n\mathbf{Z}$ d'une structure de groupe abélien; ce groupe est cyclique d'ordre 2^n ; on peut l'interpréter comme le groupe des classes de formes quadratiques binaires primitives de discriminant -2^{2n+3} , ou encore comme le groupe Pic du sous-anneau de $\mathbb{Z}[\sqrt{-2}]$ de conducteur 2^n .

- 2) La série f est de la forme $\sum \theta'_{t_i,n_i}$.
- 3) $a_n = 1 \Rightarrow n$ est de la forme $a^2 + b^2$, avec $a, b \in \mathbf{Z}$.

Exemples (la table des $\theta'_{t,n}$ pour $n \le 6$ et $0 \le t \le 2^{n-1}$ est sur le site [5]) :

$$\begin{split} \theta_{0,1}' &= \Delta; \\ \theta_{0,2}' &= \Delta; & \theta_{1,2}' &= \Delta^5; \\ \theta_{0,3}' &= \Delta; & \theta_{1,3}' &= \Delta^5 + \Delta^{13} + \Delta^{21}; & \theta_{2,3}' &= \Delta^{17}; & \theta_{3,3}' &= \Delta^{13} + \Delta^{21}. \end{split}$$

Action des opérateurs de Hecke sur les $\theta'_{t,n}$.

Si $p \equiv 3$ ou 7 (mod 8), on a $T_p | \theta'_{t,n} = 0$.

Si $p \equiv 1$ ou 5 (mod 8), on écrit p sous la forme $p = a^2 + 4b^2$, avec $a, b \in \mathbb{Z}$; on pose $t(p)' \equiv b/a \pmod{2^n}$ et $t^*(p)' = -t_1(p)'$. On a :

$$T_p|\theta'_{t,n} = \theta'_{t\bullet't(n)',n} + \theta'_{t\bullet't^*(n)',n}$$

où l'on a noté $x \bullet' y$ la loi de composition sur $\mathbf{Z}/2^n\mathbf{Z}$ définie par la formule $x \bullet' y = (x+y)/(1-4xy)$. On a en particulier $\theta'_{2^{n-1}-t(p)',n} = T_p |\Delta^{1+2^{2n}}$.

Références

- [1] F.S. Macaulay, Algebraic Theory of Modular Systems, Cambridge Tract, vol. 19, Cambridge, 1916, seconde édition, avec une introduction par P. Roberts, Cambridge, 1994.
- [2] J.-L. Nicolas, J.-P. Serre, Formes modulaires modulo 2: l'ordre de nilpotence des opérateurs de Hecke, C. R. Acad. Sci. Paris, Ser. I 350 (7–8) (2012) 343–348, http://dx.doi.org/10.1016/j.crma.2012.03.013.
- [3] D.G. Northcott, Injective envelopes and inverse polynomials, J. London Math. Soc. (2) 8 (1974) 290-296.
- [4] J.-P. Serre, Lectures on $N_X(p)$, AK Peters, CRC Press, Taylor & Francis, 2012.
- [5] http://math.univ-lyon1.fr/~nicolas/polHecke.html.