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Following Sam Payne’s work, we study the existence problem of nontrivial vector bundles
on toric varieties. The first result we prove is that every complete fan admits a nontrivial
conewise linear multivalued function. Such functions could potentially be the Chern
classes of toric vector bundles. Then we use the results of Cortiñas, Haesemeyer, Walker
and Weibel to show that the (non-equivariant) Grothendieck group of the toric 3-fold
studied by Payne is large, so the variety has a nontrivial vector bundle. Using the same
computation, we show that every toric 3-fold X either has a nontrivial line bundle, or there
is a finite surjective toric morphism from Y to X , such that Y has a large Grothendieck
group.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Suivant un travail de Sam Payne nous étudions l’existence de fibrés vectoriels non triviaux
sur une variété torique. Notre premier résultat établit que tout éventail complet admet une
fonction, non triviale, qui est linéaire et multi-valuée sur chaque cône. Une telle fonction
peut potentiellement être la classe de Chern d’un fibré vectoriel torique. Nous utilisons
alors un résultat de Cortiñas, Haesemeyer, Walker et Weibel pour montrer que le groupe
de Grothendieck (non équivariant) de la variété torique de dimension 3 étudiée par Payne
est grand et ainsi la variété a un fibré vectoriel non trivial. Par un calcul similaire nous
montrons que pour toute variété torique X de dimension 3, soit X a un fibré en droites
non trivial, soit il existe un morphisme torique, surjectif, fini de Y sur X , où Y a un grand
groupe de Grothendieck.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The purpose of this Note is to study the existence of nontrivial vector bundles on toric varieties. Sam Payne in [9] raised
the question whether every complete toric variety has a nontrivial vector bundle. He gave an example of a 3-dimensional
toric variety that does not admit a nontrivial equivariant vector bundle of rank at most 3. His proof was based on studying
the equivariant Chern classes of torus-equivariant bundles (toric bundles for short). Since a toric vector bundle splits on
a torus invariant affine open subset, its equivariant total Chern class also splits on such open sets. Payne proved that the
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particular toric 3-fold does not admit any nontrivial equivariant Chern classes of degree 3 or less, and toric vector bundles
of rank 3 or less with trivial equivariant total Chern class are all trivial.

Our first result is that one cannot use Payne’s method to prove nonexistence of toric vector bundles in arbitrary rank.
We show that every complete toric variety has a nontrivial equivariant Chern class of sufficiently high degree. (By a Chern
class we mean an equivariant cohomology class that splits on every torus invariant affine open, hence is a candidate for the
total equivariant Chern class of a toric vector bundle.)

The second result we prove is an existence result of non-equivariant vector bundles using the non-equivariant algebraic
K -theory of toric varieties. The K -theory of smooth toric varieties is well understood [7,10,6]. Singular toric varieties, on
the other hand, can have very complicated and large K -groups. Joseph Gubeladze in [4] gave an example of a toric variety
X such that K0(X) is as large as the ground field k. Thus, if k is uncountable, then the K -group has an uncountable rank.
Another such example was given by Cortiñas, Haesemeyer, Walker and Weibel in [2]. We will use the results of [2] to show
that the toric 3-fold studied by Payne is of the same type: its K -group has an uncountable rank. This in particular shows
that the 3-fold has nontrivial vector bundles of high enough rank.

Using the same K -group computation, we also show that every complete toric 3-fold X either has a nontrivial line
bundle, or there exists a finite surjective toric morphism Y → X such that K0(Y ) has an uncountable rank, and in particular,
admits a nontrivial vector bundle.

Forgetting the equivariant structure of a vector bundle induces a homomorphism from equivariant to ordinary K -group
K T

0 (X) → K0(X). This homomorphism may not be surjective when X is singular, hence K T
0 (X) could be zero, even though

K0(X) is large. For example, we do not know if Payne’s 3-fold has any nontrivial equivariant vector bundles, even though it
has lots of non-equivariant ones.

2. Equivariant Chern classes of toric vector bundles

We work over an algebraically closed field k of characteristic zero. We will assume that k is uncountable. This is needed
below to claim that some K -group has an uncountable rank.

We refer to Fulton [3] for notation on toric varieties. Let N be a lattice and M its dual lattice. A toric variety is determined
by a pair (�, N), where � is a fan in the lattice N . The set of one-dimensional cones of � is denoted �(1). For ρ ∈ �(1),
nρ is the first nonzero lattice point on ρ . The affine toric variety associated to a cone σ in N is Uσ , the big torus is T , and
the divisor corresponding to ρ ∈ �(1) is denoted Vρ .

We refer to [9] for background material on toric vector bundles. A toric vector bundle is a torus-equivariant vector bundle
on a toric variety. Such bundles were classified by Klyachko [5].

Let X� be a toric variety corresponding to a fan �. Equivariant Chern classes of toric vector bundles lie in the equivariant
Chow cohomology ring A∗

T (X�), which can be identified with the ring of integral conewise polynomial functions on the
fan � [1,8]. A toric line bundle on X� is determined by its equivariant first Chern class, which is a conewise linear integral
function on the fan �. A toric vector bundle splits into a direct sum of line bundles on every affine open Uσ ⊂ X� for
σ ∈ �. This splitting gives an r-element multiset Lσ of integral linear functions on every cone σ . When τ is a face of σ ,
then the multiset Lσ restricts to the multiset Lτ . The collection {Lσ }σ∈� is called a multivalued integral conewise linear
function on �. Its degree is r = |Lσ |. A multivalued conewise linear function is called trivial if there exists a multiset L of
global linear functions, such that Lσ is the restriction of L to σ for all cones σ ∈ �.

Given a symmetric polynomial s(x1, . . . , xr) in r variables and a multivalued conewise linear function {Lσ }σ∈� of de-
gree r, one can produce a conewise polynomial function by substituting on each cone σ the functions in Lσ into s. When si

is the i-th elementary symmetric function and {Lσ } the multivalued conewise linear function associated to a toric vector
bundle E , then the conewise polynomial function produced this way is the i-th equivariant Chern class of E . Thus, the
multivalued function encodes all the equivariant Chern class data of E .

Theorem 2.1. Let � be a fan (rational, polyhedral) in the lattice N having more than one maximal cone with dimension equal to the
rank of N. Then there exists a nontrivial multivalued conewise linear integral function on �.

Lemma 2.2. For every rational cone σ there exist two different multivalued linear integral functions on it such that the restriction of
these two functions on the facets of σ is equal as multivalued linear functions.

Proof of Lemma 2.2. We may assume that σ has dimension equal to the rank of N . Let τ1, . . . , τk be the facets of σ . Pick
nonzero elements Li ∈ M ∩ σ∨ ∩ τ⊥

i . For j = 1,2, consider the 2k−1-element multisets

A j =
{
ε1L1 + · · · + εk Lk|εi ∈ {0,1},

∑
i

εi = j (mod 2)

}
.

Then the two multisets A1, A2 restrict to the same multiset on any τi (to get a bijection between the two restrictions to τi ,
just change the coefficient εi ). The two multisets A1, A2 are not equal; for example, 0 lies in A2, but not in A1. �



S. Gharib, K. Karu / C. R. Acad. Sci. Paris, Ser. I 350 (2012) 209–212 211
Proof of the Theorem 2.1. Pick an arbitrary cone σ ∈ � of maximal dimension. By the lemma, there are two distinct
multivalued linear functions A1, A2 on σ that restrict to the same multivalued function on every face τ of σ . To define
the conewise linear function L on �, set L equal to A1 on σ and to A2 outside of σ . This function is nontrivial, i.e., not a
multiset of global linear functions, because there exists another cone σ ′ of maximal dimension on which the two multisets
A1, A2 are not equal. �
3. Non-equivariant vector bundles via Grothendieck’s K -group

We use the results of Cortiñas, Haesemeyer, Walker and Weibel [2] to show that the example 3-fold studied by Payne [9]
has a large Grothendieck group, hence it must have nontrivial vector bundles. For general complete toric 3-folds we show
that it either has a nontrivial line bundle or else we can construct a finite surjective cover with large Grothendieck group.

Let X = X� be a toric 3-fold. It is shown in [2] that the rational K -group K0(X) ⊗Q contains as a direct summand the
cohomology H1(X,F) of a coherent sheaf F on X . This sheaf is the cokernel of a morphism Ω1

X → Ω̃1
X , where Ω1

X is the
sheaf of regular differential 1-forms on X , Ω̃1

X is the Danilov’s sheaf of 1-forms (described below). Since the sheaves are
defined over the ground field k, the cohomology group is a k-vector space. Thus, if k is an extension of Q of uncountable
degree and the cohomology group is nonzero, then the rank of K0(X) must also be uncountable.

Let us first recall the definitions of the sheaf Ω̃1
X and the morphism Ω1

X → Ω̃1
X following [2]. The sheaf Ω̃1

X is defined
by the exact sequence

0 → Ω̃1
X → OX ⊗ M

δ→
⊕

ρ∈�(1)

OVρ ,

where δ maps f ⊗q ∈OX ⊗ M to f |Vρ · 〈nρ,q〉. The sheaf OX ⊗ M can be identified with the sheaf Ω1
X (log D) of differentials

with log poles along D = X�T . The identification takes f ⊗q ∈OX ⊗ M to the form f · dχq

χq . The morphism Ω1
X → Ω̃1

X sends

a form χ p dχq ∈ Ω1
X (Uσ ) to χ p+q ⊗ q ∈OX (Uσ ) ⊗ M . Its image lies in Ω̃1

X .
The two sheaves Ω̃1

X , Ω1
X and the morphism between them are T -equivariant, hence M-graded on open T -invariant sets

Uσ . If m ∈ σ∨ ∩ M , q ∈ M , then χm ⊗ q is homogeneous of degree m. The sections Ω̃1
X (Uσ ) of degree m can be described

as follows. If m /∈ σ∨ , then Ω̃1
X (Uσ )m = 0. Otherwise, let σ∨

m be the smallest face of σ∨ containing m. Then

Ω̃1
X (Uσ )m = kχm ⊗ (

Span
(
σ∨

m

) ∩ M
)
.

Let us identify the image of the map Ω1
X (Uσ )m → Ω̃1

X (Uσ )m . If p,q ∈ σ∨ ∩ M , p +q = m, then χ p dχq has degree m and
maps to χ p+q ⊗ q. Thus, the image is

kχm ⊗ (
Span

{
q|q ∈ σ∨ ∩ M,m − q ∈ σ∨ ∩ M

} ∩ M
) ⊂ kχm ⊗ (

Span
(
σ∨

m

) ∩ M
)
.

A particular case that we need below is when Span(σ∨
m ) has dimension 1. In that case Ω̃1

X (Uσ )m has dimension 1 and the
image of Ω1

X (Uσ )m is nonzero (take q = m), hence Ω1
X (Uσ )m → Ω̃1

X (Uσ )m is surjective.

3.1. Payne’s toric 3-fold

We now turn to the 3-fold in [9]. Let N = Z3 and start with the fan over the faces of the regular cube in R3 with vertices
(±1,±1,±1). To get �, we deform this fan by replacing (1,−1,1) with (1,−1,2) and (1,1,1) with (1,2,3).

Lemma 3.1. With � as above, the group K0(X(�)) has uncountable rank.

Proof. Let τ ∈ � be the 2-dimensional cone generated by (1,−1,−1) and (1,−1,2), and let σ1, σ2 be the two 3-dimen-
sional cones having τ as a face.

First let X = Uσ1 ∪ Uσ2 . Denote F = Coker(Ω1
X → Ω̃1

X ). Mayer–Vietoris sequence for the cover X = Uσ1 ∪ Uσ2 is

· · · → H0(Uσ1 ,F) ⊕ H0(Uσ2 ,F) → H0(Uτ ,F) → H1(X,F) → H1(Uσ1 ,F) ⊕ H1(Uσ2 ,F) → ·· · .
Since Uσi are affine and F is coherent, the cohomology groups H1(Uσi ,F) vanish for i = 1,2.

Let us fix m = (1,−1,0) ∈ Z3 = M . We claim that H0(Uσi ,F)m = 0 for i = 1,2, but H0(Uτ ,F)m �= 0. This implies that
H1(X,F) �= 0.

Let σ1 be the cone generated by (1,−1,−1), (1,−1,2), (1,1,−1), (1,2,3). Since 〈m, (1,2,3)〉 < 0, m /∈ σ∨ , hence
H0(Uσ1 ,F)m = 0. The other cone σ2 is generated by (1,−1,−1), (1,−1,2), (−1,−1,−1), (−1,−1,1). Now m ∈ σ∨

2 , but
it vanishes on the face of σ generated by (−1,−1,−1), (−1,−1,1), hence (σ2)

∨
m has dimension 1 and H0(Uσ2 ,F)m = 0.

The cone τ∨ is generated by (0,−1,1), (0,−2,−1),±(1,1,0). The semigroup τ∨ ∩ M is generated by these lattice points
and m. The intersection τ∨ ∩ (−τ∨ +m)∩ M spans a plane in R3. Since m lies in the interior of τ∨ , Spanτ∨

m = R3. It follows
that dimF(Uτ )m = 1.
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This finishes the proof that H1(X,F) �= 0 when X = Uσ1 ∪ Uσ2 . Next consider X� = X ∪ Y , where Y is the toric variety
corresponding to the fan ��{σ1, σ2, τ }. Mayer–Vietoris sequence for the open cover is

· · · → H1(X�,F) → H1(X,F) ⊕ H1(Y ,F) → H1(X ∩ Y ,F) → ·· · .
We claim that H1(X ∩ Y ,F) = 0, which then implies that H1(X�,F) �= 0. Indeed, X ∩ Y is covered by open affines Uτi ,
where τi has dimension 2. The intersections Uτi ∩ Uτ j for i �= j are smooth, hence F is zero on these intersections. Using

Čech cohomology, we see that H1(X ∩ Y ,F) = 0. �
3.2. The case of arbitrary complete toric 3-folds

Let X be a toric variety corresponding to a 3-dimensional complete fan �. We consider two cases: when every ray in �

has at least 4 neighbors, and when some ray has only 3 neighbors. In the first case X has a nontrivial line bundle. In the
second case there exists a finite surjective toric morphism X ′ → X , such that K0(X ′) is uncountable.

Lemma 3.2. Suppose every 1-dimensional cone ρ ∈ � is contained in at least four 2-dimensional cones of �. Then there exists a
nontrivial integral conewise linear function on the fan �.

Proof. This is a simple dimension count and left to the reader. �
Lemma 3.3. Let ρ ∈ � be 1-dimensional cone that is contained in only three 2-dimensional cones of �. Then there exists a sublattice
of finite index N ′ ⊂ N, such that the toric variety X ′ defined by (�, N ′) has K0(X ′) of uncountable rank.

Proof. Let τ , τ1, τ2 be the 2-dimensional cones containing ρ . By simple geometric considerations one can choose l ∈ M ,
such that l ∈ Rel.Intτ∨ , but l /∈ τ∨

1 , l /∈ τ∨
2 . Replacing N by a sublattice of finite index and l by a multiple p · l if necessary,

we may assume that the cone τ is nonsingular with primitive generators v1, v2, and l(v1) = l(v2) = 1. Set m = l/2 and
N ′ = {v ∈ N|〈m, v〉 ∈ Z}. We now repeat the proof that H1(X ′,F) �= 0 as above, using the lattice point m ⊂ M ′ = Hom(N ′,Z)

and the cone τ . �
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