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The purpose of this Note is to highlight the spectral instability of some non-selfadjoint
differential operators, by studying the growth rate of the norms of the spectral projections
Πn associated with their eigenvalues. More precisely, we are concerned with some

anharmonic oscillators A(m, θ) = − d2

dx2 + eiθ |x|m with |θ | < min{ (m+2)π
4 ,

(m+2)π
2m }, defined

on L2(R). We get asymptotic expansions for the norm of the spectral projections associated
with the large eigenvalues of A(1, θ) and A(2k, θ), k � 1, extending the results of Davies
(2000) [4] and Davies and Kuijlaars (2004) [5].

© 2012 Published by Elsevier Masson SAS on behalf of Académie des sciences.

r é s u m é

Notre objectif est de mettre en évidence l’instabilité spectrale de certains opérateurs
différentiels non-autoadjoints, via l’étude de la croissance des normes des projecteurs
spectraux Πn associés à leurs valeurs propres. Nous nous intéressons à certains oscillateurs

anharmoniques A(m, θ) = − d2

dx2 +eiθ |x|m avec |θ | < min{ (m+2)π
4 ,

(m+2)π
2m }, définis sur L2(R).

Nous étendons les résultats de Davies (2000) [4] et Davies et Kuijlaars (2004) [5] en
donnant un développement asymptotique de la norme des projecteurs spectraux associés
aux grandes valeurs propres pour les opérateurs A(1, θ) et A(2k, θ), k � 1.

© 2012 Published by Elsevier Masson SAS on behalf of Académie des sciences.

1. Spectral instability and pseudospectra

It is well known that the spectral theorem implies some control of stability for the spectrum of selfadjoint operators: if
A is a selfadjoint operator acting on the Hilbert space H, the spectrum of its perturbations A + εB, with ε > 0 and any
B ∈L(H), ‖B‖ � 1, lies entirely inside an ε-neighborhood of the spectrum σ(A). In other words, the norm of the resolvent
of A near the spectrum blows up like the inverse distance to the spectrum. It has also been known for several years (see
for instance [13]) that such a behavior could not be expected in general in the case of non-selfadjoint operators. One can
understand it thanks to the notion of ε-pseudospectra of an operator A, defined as the family of sets σε(A), indexed by
ε > 0,

σε(A) =
{
ξ ∈ ρ(A):

∥∥(A− ξ)−1
∥∥ >

1

ε

}
∪ σ(A).

The link between spectral instability and pseudospectra appears more clearly in the following equivalent formulation, which
is a weak version of the Roch and Silbermann theorem [11]:
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σε(A) =
⋃

ω∈L(H),
‖B‖�1

σ(A+ εB)

(see also [12] and references therein).
In the following, we deal with the instability indices associated with an isolated eigenvalue λ ∈ σ(A). The instability

index associated with λ is defined as κ(λ) = ‖Π(λ)‖, where Π(λ) denotes the spectral projection associated with λ. Of
course κ(λ) � 1 in any case, and κ(λ) = 1 when A is selfadjoint. These numbers κ(λ) are closely related to the size of
ε-pseudospectra around λ. Indeed, if σλ

ε denotes the connected component of σε(A) containing λ, and if we assume for
simplicity that σλ

ε ∩ σ(A) = {λ} and σλ
ε is bounded, then the perimeter |∂σ λ

ε | of σλ
ε satisfies (see [3])∣∣∂σ λ

ε

∣∣ � 2πεκ(λ). (1)

In the finite dimensional setting at least, instability indices give a better description of pseudospectra: if A ∈ Mn(C) is a
diagonalizable matrix with distinct eigenvalues λ1, . . . , λn , Embree and Trefethen show [13] that there exists ε0 > 0 such
that, for all ε < ε0,⋃

λk∈σ (A)

D
(
λk, εκ(λk) +O

(
ε2)) ⊂ σε(A) ⊂

⋃
λk∈σ (A)

D
(
λk, εκ(λk) +O

(
ε2)). (2)

In the case of an infinite dimensional space, the validity of this statement should be investigated, as well as the dependance
on λk of the O(ε2) terms.

In the following, we study the instability indices of simple non-selfadjoint differential operators introduced by Davies
in [4], for which the instability phenomenon described above will appear clearly. Let us define the anharmonic oscillators

A(m, θ) = − d2

dx2
+ eiθ |x|m (3)

with

|θ | < min

{
(m + 2)π

4
,
(m + 2)π

2m

}
, (4)

defined on L2(R) in [4] by taking the closure of the associated quadratic form defined on C∞
0 (R), which is sectorial if θ

satisfies (4). According to [4], its spectrum consists of a sequence of discrete simple eigenvalues, denoted in nondecreasing
modulus order by λn = λn(m, θ), |λn| → +∞. The associated spectral projections are of rank 1, and E.-B. Davies showed
in [4] that for all m ∈ ]0,+∞[ and θ 	= 0 satisfying (4), for all α > 0, there exists N = N(m, θ,α) � 0 such that the instability
indices κn(m, θ) of A(m, θ) satisfy κn(m, θ) � nα for n � N . This statement has been improved in the case m = 2 of the
harmonic oscillator (sometimes referred as the Davies operator), since E.-B. Davies and A. Kuijlaars showed [5] that κn(2, θ)

grows exponentially fast as n → +∞, with an explicit rate c(θ): there exists an explicit c(θ) such that

lim
n→+∞

1

n
logκn(2, θ) = c(θ). (5)

The purpose of this Note is to prove that this statement actually holds for the so-called complex Airy operator A(1, θ) and
for the even anharmonic oscillators A(2k, θ), k � 1.

2. Non-selfadjoint anharmonic oscillators

We first deal with the complex Airy operator A(1, θ) defined in (3). We show that the corresponding instability indices
κn(1, θ) grow like in (5) as n → +∞. More precisely, we get asymptotic expansions in powers of n−1 as n → +∞.

Theorem 2.1. Let 0 < |θ | < 3π/4. There exists a real sequence (α j(θ)) j�1 such that the instability indices κn(1, θ) of A(1, θ) satisfy,
as n → +∞,

exp
(−C(θ)(n − 1/2)

)
κn(1, θ) = K (θ)√

n

(
1 +

+∞∑
j=1

α j(θ)n− j

)
+O

(
n−∞)

, (6)

where

C(θ) = πm3/2
θ |sin θ | and K (θ) = 1

2
√

3|sin θ |m1/4
θ

,

with

mθ =
√

1 + sin2(2θ/3)

sin2 θ
− 2

cos(θ/3) sin(2θ/3)

sin θ
> 0.
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Sketch of the proof. Let us first recall that all the eigenvalues of A(m, θ), m ∈ N, have associated spectral projections of
rank 1, see Lemma 5 in [4]. Hence, one can easily check that [3]

κn(m, θ) = ‖un‖2

〈un, ūn〉 , (7)

where un denotes an eigenfunction associated with the n-th eigenvalue of A(m, θ).
We get rid of the singularity of the potential at x = 0 by decomposing A(1, θ) into its Dirichlet and Neumann realizations

AD(1, θ) and AN (1, θ) on R
+ . We then compute their instability indices

κ
D/N
n (1, θ) =

∫
R+ |Ai(μD/N

n + eiθ/3x)|2 dx

| ∫
R+ Ai(μD/N

n + eiθ/3x)2 dx|
, (8)

given by formula (7), where x 
→ Ai(μD/N
n + eiθ/3x) is the n-th eigenfunction of AD/N(1, θ), μD

n (resp. μN
n ) being the

n-th (negative) zero (resp. critical point) of the Airy function Ai (see [2,8]). We estimate the numerator in (8) by using
the well-known asymptotic expansion of Ai at infinity in the complex plane (see [1]), and the Laplace method brings an
exp(cθ |μD/N

n |3/2) term in κ
D/N
n (1, θ), cθ > 0. The integral in the denominator of (8), after deformation of the path of inte-

gration by homotopy, is equal to

+∞∫
μ

D/N
n

Ai2(x)dx = Ai′2(μD/N
n

)
(9)

(it is indeed straightforward, using Airy equation, to check that x 
→ xAi2(x) − Ai′ 2(x) is a primitive for Ai2). Hence the
expansion of Ai′(−z) as z → +∞, given in [1], provides an asymptotic expansion for (9) in powers of |μD/N

n |−3/2. The
statement follows from the behavior of μ

D/N
n as n → +∞, since we have asymptotic expansions for (n − 1/4)−2/3|μD

n |
(resp. (n − 3/4)−2/3|μN

n |) in powers of (n − 1/4)−2 (resp. (n − 3/4)−2). �
Notice that the exponential instability appears as soon as θ 	= 0.
We have a similar statement for even anharmonic oscillators:

Theorem 2.2. Let k ∈ N
∗ and θ be such that 0 < |θ | <

(k+1)π
2k . If κn(2k, θ) denotes the n-th instability index of A(2k, θ) = − d2

dx2 +
eiθ x2k, then there exist K (2k, θ) > 0 and a real sequence (C j(2k, θ)) j�1 such that

e−ck(θ)nκn(2k, θ) = K (2k, θ)√
n

(
1 +

+∞∑
j=1

C j(2k, θ)n− j

)
+O

(
n−∞)

(10)

as n → +∞, with

ck(θ) = 2(k + 1)
√

πΓ ( k+1
2k )ϕk(ξk)

Γ ( 1
2k )

> 0, (11)

where

ξk =
(

tan(|θ |/(k + 1))

sin(k|θ |/(k + 1)) + cos(k|θ |/(k + 1)) tan(|θ |/(k + 1))

) 1
2k

, (12)

ϕk(ξ) = Im

ξe
i θ

2(k+1)∫
0

(
1 − t2k)1/2

dt. (13)

Sketch of the proof. We first perform an analytic dilation and a scale change to recover the semiclassical selfadjoint an-

harmonic oscillator Ph(2k) = −h2 d2

dx2 + x2k − 1, with h = hn = |λn(2k, θ)|− k+1
2k . The n-th instability index of A(2k, θ) then

writes

κn(2k, θ) =
∫
R

|ψh(ei θ
2(k+1) x)|2 dx∫

R
ψ2

h (x)dx
(14)

where ψh solves Ph(2k)ψh = 0, ψh ∈ L2(R) (see (7), after deformation of the integration path in the denominator). The
complex WKB method (see [10,14,6]) and the analysis of the Stokes lines of Ph(2k) provide an asymptotic expansion of
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ψh(ei θ
2(k+1) x) as h → 0, which enables us to determine the asymptotic behaviour of the numerator in (14), using again the

Laplace method.
On the real axis, ψh is treated separately in its oscillatory region [−1 + δ,1 − δ], δ > 0, and in the neighbourhood of the

turning points ±1. Hence, the stationary phase method leads to an asymptotic expansion in powers of h of the denominator
in (14). Finally, the statement follows from the Bohr–Sommerfeld quantization rule for hn (see [7, Exercise 12.3]) or Weyl
formula [9]. �

In the harmonic case k = 1 (Davies operator), the first term in (10) yields the Davies–Kuijlaars theorem [5]:

lim
n→+∞

1

n
log‖Πn‖ = c1(θ) = 4ϕ1

(
1√

2 cos(θ/2)

)
= 2 Re f

(
eiθ/4

√
2 cos(θ/2)

)

where f (z) = log(z + √
z2 − 1) − z

√
z2 − 1.

3. Eigenfunctions and semigroups

The following theorem has been proved in [2] in the case of complex Airy operator A(1, θ), and in [4] in the harmonic
case (k = 1), as well as for A(2k, θ), k � 2, |θ | < π

2 . The proof actually extends to any operator A(2k, θ) with |θ | < (k+1)π
2k :

Theorem 3.1. For any m = 1,2k, k � 1, and any θ satisfying (4), the eigenfunctions of A(m, θ) form a complete set of the space L2(R).

Notice however that the eigenfunctions of A(1, θ) and A(2k, θ), k � 1, cannot form a Riesz basis because of the growth
of the instability indices as n → +∞.

Theorem 3.1 and the previous estimates enable us to study the convergence of the operator series defining the semigroup
e−tA(m,θ) associated with A(m, θ) when decomposed along the projections Πn .

The following statement extends the result of [5] in the harmonic case.

Corollary 3.2. Let |θ | � π/2 and e−tA(m,θ) be the semigroup generated by A(m, θ), λn = λn(m, θ) the eigenvalues of A(m, θ), and
Πn = Πn(m, θ) the associated spectral projections.

Let T (θ) = c1(θ)/ cos(θ/2), where c1(θ) is the constant in (11). The series Σm,θ (t) = ∑+∞
n=1 e−tλn(m,θ)Πn(m, θ) is not normally

convergent in cases m = 1 for any t > 0, and m = 2 for t < T (θ); in cases m = 2 for t > T (θ), and m = 2k for any t > 0, k � 2, the
series converges normally towards e−tA(m,θ) and, for N sufficiently large and for some constants C1 = C1(k, θ) and C2 = C2(θ), the
following estimate holds

∥∥e−tA(m,θ)(I − Π<N)
∥∥ �

⎧⎨
⎩

C1√
N

eck(θ)n exp(−t Re λN), k � 2,

C2√
N

exp(−2 cos(θ/2)(t − T (θ))N), k = 1, t > T
(15)

where Π<N = Π1 + · · · + ΠN−1 denote the projection on the first N − 1 eigenspaces.
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