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RESUME

Dans cette note on étudie les solutions des équations généralisées de Sylvester KX —
EXF =BY et MFX? + DXF + KX = BY, on donne des expressions explicites des solutions
de ces équations en utilisant des transformations matricielles et le polyndme minimal de
la matrice F.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Many control problems, such as pole assignment [2,14,16], and eigenstructure assignment [8,12], can be represented by
the following second-order linear systems

MX(t) + Dx(t) + Kx(t) = Bu(t), (1

where x(t) € R" is the state vector, u(t) € R? is the control vector and M, D, K and B are matrices of appropriate dimensions.
In certain applications, the matrices M, D and K are called the mass, damping and stiffness matrices, respectively. It can be
shown that the linear system (1) is closely related with a second-order Sylvester matrix equation and can be written as

MXF? + DXF + KX = BY, (2)

where M, D, K € (", B € ("1 and F € CP*P are known matrices, X € C("*P and Y € C?*P are the matrices to be de-
termined. When M =0 and D = —E, the second-order Sylvester matrix equation (2) reduces to the generalized Sylvester
matrix equation

KX — EXF = BY. (3)
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When M =0, D=—1I,, B=1I,, Y =W, the second-order Sylvester matrix equation (2) becomes the normal Sylvester matrix
equation

KX—XF=W. (4)

In addition, by substituting K = —F " in (4), the normal Sylvester matrix equation reduces to the well-known Lyapunov
matrix equation

FTX+XF=-W. (5)

All the equations mentioned above play an important role in various applied problems. Therefore, despite that numerous
algorithms were developed to solve these equations ([3-7,9-11,13,17] etc.), the development of some new algorithms is still
of importance. In this note, a simple method for solving Eq. (2) and Eq. (3) is presented by some matrix transformations
and the minimal polynomial of the matrix F, and the explicit solutions of the equations are provided.

2. Matrix equation KX — EXF = BY

In this section, we discuss the solution of the matrix equation (3). To begin with, we give the following lemma [1]:

Lemma 1. If L € C™*4, | ¢ C"*P, then LZ = ] has a solution Z € C?*P if and only if LL™ | = ]. In this case, the general solution of
the equation can be described as Z = L ] + (I — LYL)U, where L represents the Moore-Penrose generalized inverse of the matrix L,
and U € C?*P is an arbitrary matrix.

It follows from Lemma 1 that the equation of (3) with unknown matrix Y has a solution if and only if
(In—BB*)KX — (I — BBY)EXF =0, (6)
when the condition (6) is satisfied, the general solution to the equation of (3) with unknown matrix Y is given by
Y =B (KX — EXF)+ (I — B*B)T,

where T € C?*P is an arbitrary matrix.
Let

P1=(I,—BBT)K,  Qi=(I,—BB")E,
then, the equation of (6) is equivalent to
P1X=Q1XF. (7)

Applying the approach in [15], assume that the columns of the matrix [Gq, H{]' form the basis of the null space of
[QlT s —PT] (the matrices Gq, Hy may be found using procedure null.m package MATLAB), then we have

G1Qq =H;Py. (8)
Using the equality (8), we get

G1P1X=G1Q1XF=H{P1XF=H;Q{XF2. 9)
Let

Py =GPy, Q2=H1Qq, (10)
then the equation of (9) becomes

PoX = Q,XF?. (11)
Similarly, let the columns of the matrix [G2, H2]" form the basis of the null space of [Q, , —P, ], that is,

G2Q2 = HaP;. (12)
Using the equality (12), we have

P3X = Q3XF>,
where P3 =G, P;, Q3 =H3Q5.
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A similar procedure can be used to construct the relation with higher degrees of the matrix F,

PeX = QuXFX, k=1,2,..., (13)

where Py = Gy_1Py_1, Qx = Hi_1Qy_1, and the columns of the matrix [Gy_;, Hx_1]" form the basis of the null space of
Q) ,.—P, ;] that s,

Gr-1Qk—1=Hg1Px—1, k=2,3,....
It is easily seen that

Py = Gr_1Gg—2---G2G1 Py, Q= Hr_1Hk—2---H2H1 Q1. (14)

Assume that the minimal polynomial of the matrix F is

me) =A+ AT 4+ i+ A (15)
Then, by (13), we have

(Pr+ fiHi—1Pi—1 + fo2Hi-1Hi—2Pi—2 + -+ + fi-1Hi—1Hi—2--- H2H1P1 + fiQ)X

= QX(F'+ fiF™" + - 4 fi F + fil ) =0.

In summary of the above discussion and using Lemma 1, we have proved the following result:

Theorem 1. Let P1 = (I, — BBN)K, Q1 = (I, — BB")E. Assume that the matrix [Gx_1, Hx_1] is of full row rank and satisfies
Gr_1Qk_1 = Hg_1Pr_1, k=2,3,..., where P, = Gy_1Pr_1, Qx = Hx_1Qx_1, k =2, 3, .... Let the minimal polynomial of the
matrix F be given by (15).Set D = Py + fiH;_1P;_1+ foH_1H;_2P;_2+---+ fi_1H;_1H|_3 - -- HoH1 P1 + f;Qy, then the solution
of Eq. (3) can be expressed as

X=(l,—D*D)V, (16)
Y =B*[K(I,—D*D)V — E(I — D*D)VF]+ (I — B*B)T, (17)
where V € C"P, T € CI*P are arbitrary matrices.

3. Matrix equation MXF? + DXF + KX = BY

In this section, we study the solution of the matrix equation (2). Using Lemma 1, the equation of (2) with unknown
matrix Y has a solution if and only if

(In — BBT)(MXF? + DXF + KX) =0, (18)
when the condition (18) is satisfied, the general solution to the equation of (2) with unknown matrix Y is given by
Y =B*(MXF? + DXF + KX) + (Ig — B*B)T,

where T € C?*P is an arbitrary matrix.

Let
= [ —-U,—BBHK 0 ~ [ U,—BBT)D (I—BBT)M
Pr= [ 0 (In—BBHM | Q= (I, — BBH)M 0 : (19)
then, the equation of (18) is equivalent to
=~ | X ~ X
By a similar approach in Section 2, we have
~ X | _ s X k
P"[XF]_Q"[XF]F’ (21)
where the matrix [Gy_1, Hx_1] is of full row rank and is determined alternately by the following relations:
Gk—1Qu—1=Hy—1Prq, k=2,3,..., (22)

Py = Gy1Pr1. Qr=Hi-1Qx1, k=2,3,.... (23)
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Assume that the minimal polynomial of the matrix F is given by (15). Then, by (21), we have

=~ X
D |:XFi| =0, (24)
where D =P+ fiHi_1Pi_1 + foHi_1Hi2Pio + -+ fiiaHiogHi_y - HoH1 P1 + £1Q.
Let
D =[Py, —Qil.
Then the equation of (24) is equivalent to
P1X = Q1 XF, (7)

and the solution is given by (16).
By now, we have proved the following result:

Theorem 2. Let P, Q1 be given by (19). Assume that the matrix [G,< 1, Hk 11is of full row rank and satisfies Gy_1 Qg1 = Hi 1Pk 1
k=2,3,..., where Py = Gk 1Pk 1 Qk = Hy_1 041, k=2,3,.... Let the minimal polynomial of the matrix F be given by (15). Set
D= Pl—l—f]Hl 1P1 1+f2Hl 1Hl 2Pl 2+ -+ fi_1H_ 1Hl 2 H2H1P1+f,QlandthenpartltlonDasD_[P1, Q1]. Then
the solution of Eq. (2) can be expressed as

X=(l,—D*D)V, (25)
Y =B"[M(l, — DYD)VF? 4+ D(Iy — D*D)VF + K(In — DTD)V] + (I — B*B)T, (26)

where D = Pj+ fiH_1Pi_1 + foH_1H|_2P;_> +---+ fi_1H|_1H|_3---HyH{ Py + fiQ;, and V € C"*P, T € CI*P are arbitrary
matrices.
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