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Let (M,ω) be a closed 2n-dimensional symplectic manifold equipped with a Hamiltonian
T n−1-action. Then Atiyah–Guillemin–Sternberg convexity theorem implies that the image
of the moment map is an (n − 1)-dimensional convex polytope. In this Note, we show that
the density function of the Duistermaat–Heckman measure is log-concave on the image of
the moment map.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Soit (M,ω) une variété symplectique de dimension 2n munie d’une action hamiltonienne
du tore T n−1. Le théorème de convexité d’Atiyah–Guillemin–Sternberg implique que
l’image de l’application moment est un polytope convexe de dimension (n − 1). Dans cette
Note, nous montrons que la fonction de densité de la mesure de Duistermaat–Heckman est
log-concave sur l’image de l’application moment.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In statistical physics, the relation S(E) = k log W (E) is called Boltzmann’s principle where W is the number of states
with given values of macroscopic parameters E (like energy, temperature, . . . ), k is the Boltzmann constant, and S is the
entropy of the system, which measures the degree of disorder in the system. For the additive values E , it is well known
that the entropy is always a concave function. (See [9] for more details.) In a symplectic setting, consider a Hamiltonian
G-manifold (M,ω) with the moment map μ : M → g∗ . The Liouville measure mL is defined by

mL(U ) :=
∫

U

ωn

n!

for any open set U ⊂ M . Then the push-forward measure mDH := μ∗mL , called the Duistermaat–Heckman measure, can be
regarded as a measure on g∗ such that for any Borel subset B ⊂ g∗ , mDH(B) = ∫

μ−1(B)
ωn

n! tells us that how many states of
our system have momenta in B. By the Duistermaat–Heckman theorem [2], mDH can be expressed in terms of the density
function DH(ξ) with respect to the Lebesque measure on g∗ . Therefore the concavity of the entropy of a given periodic
Hamiltonian system on (M,ω) can be interpreted as the log-concavity of DH(ξ) on the image of μ. A. Okounkov [10]
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Fig. 1. Proof of Theorem 1.1.

proved that the density function of the Duistermaat–Heckman measure is log-concave on the image of the moment map for
the maximal torus action, when (M,ω) is the co-adjoint orbit of some classical Lie groups. In [3], W. Graham showed that
the log-concavity of the density function of the Duistermaat–Heckman measure also holds for any Kähler manifold admitting
a holomorphic Hamiltonian torus action. V. Ginzberg and A. Knutson conjectured independently that the log-concavity holds
for any Hamiltonian G-manifolds, but this turns out to be false in general, shown by Y. Karshon [5]. Further related works
can be found in [7] and [1].

As noted in [5] and [3], log-concavity holds for Hamiltonian toric (i.e. complexity zero) actions, and Y. Lin dealt with
the log-concavity of complexity two Hamiltonian torus actions in [7]. However, there is no result on the log-concavity of
complexity one Hamiltonian torus action. This is why we restrict our interest to complexity one. From now on, we assume
that (M,ω) is a 2n-dimensional closed symplectic manifold with an effective Hamiltonian T n−1-action. Let μ : M → t∗ be
the corresponding moment map where t∗ is a dual of the Lie algebra of T n−1. By the Atiyah–Guillemin–Sternberg convexity
theorem, the image of the moment map μ(M) is an (n−1)-dimensional convex polytope in t∗ . By the Duistermaat–Heckman
theorem [2], we have

mDH = DH(ξ)dξ

where dξ is the Lebesque measure on t∗ ∼= Rn−1 and DH(ξ) is a continuous piecewise polynomial function of degree less
than 2 on t∗ . Our main theorem is as follows:

Theorem 1.1. Let (M,ω) be a 2n-dimensional closed symplectic manifold equipped with a Hamiltonian T n−1-action with the moment
map μ : M → t∗ . Then the density function of the Duistermaat–Heckman measure is log-concave on μ(M).

2. Proof of Theorem 1.1

Let (M,ω) be a 2n-dimensional closed symplectic manifold. Let (n−1)-dimensional torus T act on (M,ω) in Hamiltonian
fashion. Denote by t the Lie algebra of T . For a moment map μ : M → t∗ of the T -action, define the Duistermaat–Heckman
function DH : t∗ → R as

DH(ξ) =
∫

Mξ

ωξ

where Mξ is the reduced space μ−1(ξ)/T and ωξ is the corresponding reduced symplectic form on Mξ .
Now, we define the x-ray of our action. Let T1, . . . , T N be the subgroups of T n−1 which occur as stabilizers of points in

M2n . Let Mi be the set of points whose stabilizers are Ti . By relabeling, we can assume that the Mi ’s are connected and
the stabilizer of points in Mi is Ti . Then, M2n is a disjoint union of Mi ’s. Also, it is well known that Mi is open dense in its
closure and the closure is just a component of the fixed set MTi . Let M be the set of Mi ’s. Then, the x-ray of (M2n,ω,μ) is
defined as the set of μ(Mi)’s. Here, we recall a basic lemma:

Lemma 2.1. (See [4, Theorem 3.6].) Let h be the Lie algebra of Ti . Then μ(Mi) is locally of the form x + h⊥ for some x ∈ t∗.

By this lemma, dimR μ(Mi) = m for (n − 1 − m)-dimensional Ti . Each image μ(Mi) (resp. μ(Mi)) is called an m-face
(resp. an open m-face) of the x-ray if Ti is (n − 1 − m)-dimensional. Our interest is mainly in open (n − 2)-faces of the x-ray,
i.e. codimension one in t∗. Fig. 1 is an example of x-ray with n = 3 where thick lines are (n − 2)-faces. Now, we can prove
the main theorem.

Proof of Theorem 1.1. When n = 2, we obtain a proof by [6, Lemma 2.19]. So, we assume n � 3. Pick arbitrary two points
x0, x1 in the image of μ. We should show that

t log
(
DH(x1)

) + (1 − t) log
(
DH(x0)

)
� log

(
DH

(
tx1 + (1 − t)x0

))
(1)
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for each t ∈ [0,1]. Put xt = tx1 + (1 − t)x0.

Let us fix a decomposition T = S1 × · · · × S1. By the decomposition, we identify t with Rn−1, and t carries the usual
Riemannian metric 〈, 〉0 which is a bi-invariant metric. This metric gives the isomorphism

ι : t→ t∗, X 
→ 〈·, X〉0.

For a small ε > 0, pick two regular values ξi in the ball B(xi, ε) for i = 0,1 which satisfy the following two conditions:

i. ξ1 − ξ0 ∈ ι(Qn−1),

ii. the line L containing ξ0, ξ1 in t∗ meets each open m-face transversely for m = 1, . . . ,n − 2.

Transversality guarantees that the line does not meet any open m-face for m � n − 3. Put

ξt = tξ1 + (1 − t)ξ0 and X = ι−1(ξ1 − ξ0).

Let k⊂ t be the one-dimensional subalgebra spanned by X . By i., k becomes a Lie algebra of a circle subgroup of T , call it K .

Let t′ be the orthogonal complement of k in t. Again by i., t′ becomes a Lie subgroup of an (n − 2)-dimensional subtorus
of T , call it T ′. Let

p : t∗ → t′∗ = ι
(
t′
)

be the orthogonal projection along k∗ = ι(k′). If we put μ′ = p ◦ μ, then μ′ : M → t′∗ is a moment map of the restricted
T ′-action on M. Put ξ ′ = p(ξt) for t ∈ [0,1].

We want to show that ξ ′ is a regular value of μ′. For this, we show that each point x ∈ μ′−1(ξ ′) is a regular point of μ′.
By ii. and Lemma 2.1, stabilizer Tx is finite or one-dimensional. If Tx is finite, then x is a regular point of μ so that it is
also a regular point of μ′. If Tx is one-dimensional, then μ(x) is a point of an open (n − 2)-face μ(Mi) such that x ∈ Mi .

Let h be the Lie algebra of Ti = Tx. By Lemma 2.1, p(dμ(Tx Mi)) = p(h⊥), and the kernel k of p is not contained in h⊥ by
transversality. So, p(h⊥) is the whole t′∗ because dimh⊥ = dim t′∗, and this means that x is a regular point of μ′. Therefore,
we have shown that ξ ′ is a regular value of μ′.

Since ξ ′ is a regular value, the preimage μ′−1(ξ ′) is a manifold and T ′ acts almost freely on it, i.e. stabilizers are finite.
So, if we denote by Mξ ′ the symplectic reduction μ′−1(ξ ′)/T ′, then it becomes a symplectic orbifold carrying the induced
symplectic T /T ′-action. We can observe that the image of μ′−1(ξ ′) through μ is the thick dashed line in Fig. 1. Since
K/(K ∩ T ′) ∼= T /T ′, we will regard K/(K ∩ T ′) and k as T /T ′ and its Lie algebra, respectively. The map μX := 〈μ, X〉 induces
a map on Mξ ′ by T -invariance of μ, call it just μX where 〈,〉 : t∗ ×t →R is the evaluation pairing. Then, we can observe that
μX is a Hamiltonian of the K/(K ∩ T ′)-action on Mξ ′ , and that Mξt is symplectomorphic to the symplectic reduction of Mξ ′
at the regular value 〈ξt , X〉 with respect to μX . If we denote by DHX the Duistermaat–Heckman function of μX : Mξ ′ → R,

then we have DH(ξt) = DHX (〈ξt , X〉) for t ∈ [0,1]. Since Mξ ′ is a four-dimensional symplectic orbifold with Hamiltonian
circle action, DHX is log-concave by Lemma 2.2 below. Since xt and ξt are sufficiently close and DH is continuous by [2],
we can show (1) by log-concavity of DHX . �
Lemma 2.2. Let (N, σ ) be a closed four-dimensional Hamiltonian S1-orbifold. Then the density function of the Duistermaat–Heckman
measure is log-concave.

Proof. Let φ : N → R be a moment map. Then the density function DH : Imφ →R�0 of the Duistermaat–Heckman measure
is given by

DH(t) =
∫

Nt

σt

for any regular value t ∈ Imφ. Let (a,b) ⊂ Imφ be an open interval consisting of regular values of φ and fix t0 ∈ (a,b). By the
Duistermaat–Heckman theorem [2], [σt] − [σt0 ] = −e(t − t0) for any t ∈ (a,b), where e is the Euler class of the S1-fibration
φ−1(t0) → φ−1(t0)/S1. Therefore

DH′(t) = −
∫

Nt

e

and

DH′′(t) = 0

for any t ∈ (a,b). Note that DH(t) is log-concave on (a,b) if and only if it satisfies DH(t) · DH′′(t) − DH′(t)2 � 0 for all
t ∈ (a,b). Hence DH(t) is log-concave on any open intervals consisting of regular values.



848 Y. Cho, M.K. Kim / C. R. Acad. Sci. Paris, Ser. I 350 (2012) 845–848
Let c be any interior critical value of φ in Im φ. Then it is enough to show that the jump in the derivative of (log DH)′
is negative at c. First, we will show that the jump of the value DH′(t) = − ∫

Nt
e is negative at c. Choose a small ε > 0

such that (c − ε, c + ε) does not contain a critical value except for c. Let Nc be a symplectic cut of φ−1[c − ε, c + ε] along
the extremum so that Nc becomes a closed Hamiltonian S1-orbifold whose maximum is the reduced space Mc+ε and the
minimum is Nc−ε . Using the Atiyah–Bott–Berline–Vergne localization formula for orbifolds [8], we have

0 =
∫

Nc

1 =
∑

p∈N S1 ∩φ−1(c)

1

dp

1

p1 p2λ2
+

∫

Mc−ε

1

λ + e−
+

∫

Nc+ε

1

−λ − e+

which is equivalent to

0 =
∑

p∈N S1 ∩φ−1(c)

1

p1 p2
=

∫

Nc−ε

e− −
∫

Nc+ε

e+,

where dp is the order of the local group of p, p1 and p2 are the weights of the tangential S1-representation on T p N , and
e− (e+ respectively) is the Euler class of φ−1(c − ε) (φ−1(c + ε) respectively). Since c is in the interior of Im φ, we have
p1 p2 < 0 for any p ∈ N S1 ∩ φ−1(c). Hence the jump of DH′(t) = −∫

Nt
e is negative at c, which implies that the jump of

log DH(t)′ = DH′(t)
DH(t) is negative at c (by continuity of DH(t)). This finishes the proof. �

References

[1] Y. Cho, The log-concavity conjecture on semifree symplectic S1-manifolds with isolated fixed points, arXiv:1103.2998.
[2] J.J. Duistermaat, G.J. Heckman, On the variation in the cohomology of the symplectic form of the reduced phase space, Invent. Math. 69 (1982) 259–

268.
[3] W. Graham, Logarithmic convexity of push-forward measures, Invent. Math. 123 (1996) 315–322.
[4] V. Guillemin, S. Sternberg, Convexity property of the moment mapping, Invent. Math. 67 (1982) 491–513.
[5] Y. Karshon, Example of a non-log-concave Duistermaat–Heckman measure, Math. Res. Lett. 3 (1996) 537–540.
[6] Y. Karshon, Periodic Hamiltonian flows on four dimensional manifolds, Mem. Amer. Math. Soc. 141 (672) (1999).
[7] Y. Lin, The log-concavity conjecture for the Duistermaat–Heckman measure revisited, Int. Math. Res. Not. (10) (2008), Art. ID rnn027, 19 pp.
[8] E. Meinrenken, Symplectic surgery and the Spinc -Dirac operators, Adv. Math. 134 (1998) 240–277.
[9] A. Okounkov, Why would multiplicities be log-concave?, in: The Orbit Method in Geometry and Physics, Marseille, 2000, in: Progress in Mathematics,

vol. 213, Birkhäuser Boston, Boston, MA, 2003, pp. 329–347.
[10] A. Okounkov, Log-concavity of multiplicities with application to characters of U (∞), Adv. Math. 127 (1997) 258–282.


	Log-concavity of complexity one Hamiltonian torus actions
	1 Introduction
	2 Proof of Theorem 1.1
	References


