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RESUME

Soit (M, w) une variété symplectique de dimension 2n munie d'une action hamiltonienne
du tore T"'. Le théoréme de convexité d’Atiyah-Guillemin-Sternberg implique que
I'image de I'application moment est un polytope convexe de dimension (n — 1). Dans cette
Note, nous montrons que la fonction de densité de la mesure de Duistermaat-Heckman est
log-concave sur I'image de I'application moment.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In statistical physics, the relation S(E) = klog W (E) is called Boltzmann’s principle where W is the number of states
with given values of macroscopic parameters E (like energy, temperature, ...), k is the Boltzmann constant, and S is the
entropy of the system, which measures the degree of disorder in the system. For the additive values E, it is well known
that the entropy is always a concave function. (See [9] for more details.) In a symplectic setting, consider a Hamiltonian
G-manifold (M, w) with the moment map w : M — g*. The Liouville measure m; is defined by

a)n
mp(U) := o
u

for any open set U C M. Then the push-forward measure mpy := u.my, called the Duistermaat-Heckman measure, can be
regarded as a measure on g* such that for any Borel subset B C g*, mpu(B) = fler ‘,‘j—:’ tells us that how many states of
our system have momenta in B. By the Duistermaat-Heckman theorem [2], mpy can be expressed in terms of the density
function DH(¢) with respect to the Lebesque measure on g*. Therefore the concavity of the entropy of a given periodic
Hamiltonian system on (M, ®) can be interpreted as the log-concavity of DH(¢) on the image of w. A. Okounkov [10]
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Fig. 1. Proof of Theorem 1.1.

proved that the density function of the Duistermaat-Heckman measure is log-concave on the image of the moment map for
the maximal torus action, when (M, w) is the co-adjoint orbit of some classical Lie groups. In [3], W. Graham showed that
the log-concavity of the density function of the Duistermaat-Heckman measure also holds for any Kdhler manifold admitting
a holomorphic Hamiltonian torus action. V. Ginzberg and A. Knutson conjectured independently that the log-concavity holds
for any Hamiltonian G-manifolds, but this turns out to be false in general, shown by Y. Karshon [5]. Further related works
can be found in [7] and [1].

As noted in [5] and [3], log-concavity holds for Hamiltonian toric (i.e. complexity zero) actions, and Y. Lin dealt with
the log-concavity of complexity two Hamiltonian torus actions in [7]. However, there is no result on the log-concavity of
complexity one Hamiltonian torus action. This is why we restrict our interest to complexity one. From now on, we assume
that (M, w) is a 2n-dimensional closed symplectic manifold with an effective Hamiltonian T"~!-action. Let 1 : M — t* be
the corresponding moment map where t* is a dual of the Lie algebra of T"~!. By the Atiyah-Guillemin-Sternberg convexity
theorem, the image of the moment map @ (M) is an (n—1)-dimensional convex polytope in t*. By the Duistermaat-Heckman
theorem [2], we have

mpy = DH(¢) d§

where dé is the Lebesque measure on t* = R"~! and DH(£) is a continuous piecewise polynomial function of degree less
than 2 on t*. Our main theorem is as follows:

Theorem 1.1. Let (M, w) be a 2n-dimensional closed symplectic manifold equipped with a Hamiltonian T"~!-action with the moment
map (4 : M — t*. Then the density function of the Duistermaat-Heckman measure is log-concave on p(M).

2. Proof of Theorem 1.1

Let (M, w) be a 2n-dimensional closed symplectic manifold. Let (n— 1)-dimensional torus T act on (M, @) in Hamiltonian
fashion. Denote by t the Lie algebra of T. For a moment map u : M — t* of the T-action, define the Duistermaat-Heckman
function DH: t* — R as

DH(§) = / o

Mg

where Mg is the reduced space w(€)/T and wg is the corresponding reduced symplectic form on Mg.

Now, we define the x-ray of our action. Let Tq,..., Ty be the subgroups of T"~! which occur as stabilizers of points in
M?2", Let M; be the set of points whose stabilizers are T;. By relabeling, we can assume that the M;'s are connected and
the stabilizer of points in M; is T;. Then, M?" is a disjoint union of M;'s. Also, it is well known that M; is open dense in its
closure and the closure is just a component of the fixed set MTi. Let 9t be the set of M;'s. Then, the x-ray of (M%", w, p) is
defined as the set of ((M;)’s. Here, we recall a basic lemma:

Lemma 2.1. (See [4, Theorem 3.6].) Let b be the Lie algebra of T;. Then (M) is locally of the form x + b= for some x € t*.

By this lemma, dimg p(M;) =m for (n — 1 — m)-dimensional T;. Each image w(M;) (resp. w(M;)) is called an m-face
(resp. an open m-face) of the x-ray if T; is (n — 1 —m)-dimensional. Our interest is mainly in open (n — 2)-faces of the x-ray,
i.e. codimension one in t*. Fig. 1 is an example of x-ray with n =3 where thick lines are (n — 2)-faces. Now, we can prove
the main theorem.

Proof of Theorem 1.1. When n =2, we obtain a proof by [6, Lemma 2.19]. So, we assume n > 3. Pick arbitrary two points
Xp, X1 in the image of w. We should show that

tlog(DH(x1)) + (1 —t) log(DH(x0)) < log(DH(tx1 + (1 — t)x)) (1)
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for each t € [0, 1]. Put x; =tx1 + (1 — t)Xxg.
Let us fix a decomposition T = S! x --- x S!. By the decomposition, we identify t with R"™~!, and t carries the usual
Riemannian metric {, o which is a bi-invariant metric. This metric gives the isomorphism

R = X (-, X)o.

For a small € > 0, pick two regular values &; in the ball B(x;, €) for i =0, 1 which satisfy the following two conditions:

i & —& €@,

ii. the line L containing &g, & in t* meets each open m-face transversely for m=1,...,n—2.
Transversality guarantees that the line does not meet any open m-face for m <n — 3. Put

E=t&1+(1—0& and X=1"'(& —&).

Let £ C t be the one-dimensional subalgebra spanned by X. By i., £ becomes a Lie algebra of a circle subgroup of T, call it K.
Let t' be the orthogonal complement of ¢ in t. Again by i., t becomes a Lie subgroup of an (n — 2)-dimensional subtorus
of T, call it T'. Let

pitt =t =(t)

be the orthogonal projection along ¢* = ((¥'). If we put ' =pou, then u': M — t* is a moment map of the restricted
T’-action on M. Put ¢’ = p(&) for t € [0, 1].

We want to show that £ is a regular value of u’. For this, we show that each point x € /=1 (¢’) is a regular point of p’.
By ii. and Lemma 2.1, stabilizer Ty is finite or one-dimensional. If Ty is finite, then x is a regular point of u so that it is
also a regular point of w'. If Ty is one-dimensional, then 1 (x) is a point of an open (n — 2)-face @(M;) such that x € M;.
Let  be the Lie algebra of T; = Ty. By Lemma 2.1, p(du(TxM;)) = p(h1), and the kernel ¢ of p is not contained in h~ by
transversality. So, p(h1) is the whole t* because dim b+ = dim t*, and this means that x is a regular point of 1’. Therefore,
we have shown that &’ is a regular value of u'.

Since &’ is a regular value, the preimage p/~1(£’) is a manifold and T’ acts almost freely on it, i.e. stabilizers are finite.
So, if we denote by Mg the symplectic reduction w'=1(&)/T', then it becomes a symplectic orbifold carrying the induced
symplectic T/T’-action. We can observe that the image of w'~1(¢’) through w is the thick dashed line in Fig. 1. Since
K/(KNT)=T/T’, we will regard K/(KNT’) and ¢ as T/T’ and its Lie algebra, respectively. The map wx := (i, X) induces
a map on Mg by T-invariance of u, call it just x where (,) : t* x t — R is the evaluation pairing. Then, we can observe that
ix is a Hamiltonian of the K /(K N T’)-action on Mg/, and that Mg, is symplectomorphic to the symplectic reduction of Mg/
at the regular value (&, X) with respect to wx. If we denote by DHx the Duistermaat-Heckman function of px : Mgr — R,
then we have DH(&) = DHx ({(&, X)) for t € [0, 1]. Since Mg is a four-dimensional symplectic orbifold with Hamiltonian
circle action, DHy is log-concave by Lemma 2.2 below. Since x; and &; are sufficiently close and DH is continuous by [2],
we can show (1) by log-concavity of DHx. O

Lemma 2.2. Let (N, o) be a closed four-dimensional Hamiltonian S!-orbifold. Then the density function of the Duistermaat-Heckman
measure is log-concave.

Proof. Let ¢ : N — R be a moment map. Then the density function DH:Im¢ — R3¢ of the Duistermaat-Heckman measure
is given by

DH(t)=/O't

N¢

for any regular value t € Im¢. Let (a, b) C Im¢ be an open interval consisting of regular values of ¢ and fix to € (a, b). By the
Duistermaat-Heckman theorem [2], [0¢] — [0t,] = —e(t — to) for any ¢ € (a, b), where e is the Euler class of the S1-fibration
¢~ (to) = ¢~ (to)/S!. Therefore

DH'(t) = — / e
N¢
and
DH"(t) =0

for any t € (a,b). Note that DH(t) is log-concave on (a,b) if and only if it satisfies DH(t) - DH"(t) — DH'(t)2 < 0 for all
t € (a,b). Hence DH(t) is log-concave on any open intervals consisting of regular values.
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Let ¢ be any interior critical value of ¢ in Im¢. Then it is enough to show that the jump in the derivative of (logDH)’
is negative at c. First, we will show that the jump of the value DH'(t) = —fN[ e is negative at c. Choose a small € >0

such that (c — €, c + €) does not contain a critical value except for c. Let N. be a symplectic cut of $~![c — €, c + €] along
the extremum so that N. becomes a closed Hamiltonian S'-orbifold whose maximum is the reduced space M., and the
minimum is N._¢. Using the Atiyah-Bott-Berline-Vergne localization formula for orbifolds [8], we have

0—/1—2 1]+/1+/ !
N - dp p1p2r2 Ate_ —A—e4

N peNs ng=1(c) Mc-c Nese

which is equivalent to

1
0= —:/e,—/e,
Z P1D2 N -

peNs'ng=1(c) . Nee

where d, is the order of the local group of p, p1 and p; are the weights of the tangential Sl_representation on TyN, and
e_ (e4 respectively) is the Euler class of ¢~1(c —€) (¢~ (c + €) respectively). Since c is in the interior of Im¢, we have
p1p2 <0 for any p € NS' N¢~1(c). Hence the jump of DH/(t) = —the is negative at ¢, which implies that the jump of

logDH(t) = 11))]-111/((:)) is negative at c (by continuity of DH(t)). This finishes the proof. O
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