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In this Note we present a new continuity method and a priori C2,α estimate for the
degenerate complex Monge–Ampère equation. We then describe some applications of this
method to the existence of Kähler–Einstein edge metrics, as conjectured by Tian and
Donaldson.
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r é s u m é

Dans cette Note nous introduisons une nouvelle méthode de continuité et estimée
C2,α a priori, pour l’équation de Monge–Ampère complexe dégénérée. Nous présentons
également quelques applications de cette méthode à l’existence de métriques de Kähler–
Einstein ayant une structure conique le long d’arêtes, confirm des conjectures de Tian et
de Donaldson.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

Dans cette Note, nous introduisons une nouvelle méthode de continuité pour la construction de métriques de Kähler–
Einstein singulières sur des variétés kählériennes compactes. Nous montrons que cette méthode est parfaitement adaptée
pour la construction de métriques qui ont une structure conique le long d’arêtes (une arête sera pour nous un diviseur).
L’existence de telles métriques a plusieurs applications que nous discuterons ailleurs.

Soit D = D1 + · · · + Dk ⊂ M un diviseur à croisements normaux simples (SNC), où chaque Di est une composante
lisse. Soit si une section holomorphe du fibré en droites associé à Di , avec une métrique hermitienne lisse hi . Pour β =
(β1, . . . , βk) ∈ (0,1]k , soit ωβ := ω0 + ε

∑k
i=1

√−1∂∂̄(|si |2hi
)βi la métrique à structure conique modèle d’angle 2πβi le long

de Di .

Définition 0.1. Un courant de Kähler ω est un courant de Kähler–Einstein (KE), à structure conique le long d’une arête,
de courbure de Ricci μ et angle conique 2πβi le long de Di , s’il existe C > 0 tel que C−1ωβ � ω � Cωβ et si Ricω −∑

i(1 − βi)[Di] = μω, où [D] est le courant d’intégration associé à D .
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Tian [15] a conjecturé que de telles métriques KE existent toujours quand μ < 0, si l’on suppose que c1(M) −∑
i(1 −βi)c1(LDi ) < 0. Récemment, Donaldson [7] a conjecturé l’existence de telles métriques avec 0 < μ = β � 1 quand M

est Fano et D est un diviseur anticanonique lisse. Le résultat suivant confirme ces conjectures de Tian et Donaldson. Dans le
cas positif il faut utiliser une généralisation de la fonctionnelle de Mabuchi adaptée aux métriques à singularités coniques
le long d’arêtes.

Théorème 0.2. Soit Ω ∈ H2(M,R) une classe de Kähler, μ � 0, β ∈ (0,1]k, avec c1(M) − ∑
i(1 − βi)c1(LDi ) = μΩ . Alors, il existe

une métrique de Kähler–Einstein dont la courbure de Ricci μ représentant la classe Ω avec un angle 2πβi le long de Di . Dans le cas où
μ > 0, on dispose d’un résultat semblable si l’on suppose que la fonctionnelle adaptée de Mabuchi est propre. De plus, cette métrique
et son tenseur de courbure admettent des développements asymptotiques polyhomogènes près de D.

1. Main results and applications

Our goal in this Note is to describe a new continuity method for the construction of Kähler–Einstein metrics on compact
Kähler manifolds, to show that it is very well suited for proving the existence of such metrics which are bent at an angle
along a divisor, and finally to describe some uses for these singular metrics. (To be accurate, this continuity method was
first introduced in the smooth setting by the second named author [14], and more recently adapted in [9] to the singular
setting, and plays a similarly important role in the forthcoming paper [12].) It is well known that the Kähler–Einstein
equation Ricωϕ = μωϕ (for some μ ∈R) is equivalent to the complex Monge–Ampère equation

ωn
ϕ = ωne fω−μϕ, (1)

where fω is defined by
√−1∂∂̄ fω = Ricω − μω and normalized by the condition

∫
M(e fω − 1)ωn = 0.

When μ = 0, this is known as the Calabi–Yau equation and the standard approach to solving it uses Calabi’s continuity
path [5]:

ωn
ϕ(t) = ωnet fω+ct , t ∈ [0,1], where ect :=

∫
M

ωne fω
/∫

M

ωnet fω ∈R+;

the corresponding continuity path for μ < 0 is ωn
ϕ(t) = ωnet fω−μϕ(t) , t ∈ [0,1]. When μ > 0, following Aubin [2], the stan-

dard approach is to concatenate Calabi’s path with ωn
ϕ(t) = ωne fω−(t−1)ϕ(t) , t ∈ [1,μ + 1]. A key part of the analysis is to

prove the a priori estimate ‖ϕ(t)‖C2,α(M,ω) � C, where C depends on n,
∫

M ωn , ‖ϕ(t)‖C0(M), and minM Bisecω, and also
on other quantities related to ω but that will always be bounded in our problems (such as the Sobolev and Poincaré
constants of ω). Here minM Bisecω := minη,ν minM Bisecω(η,ν), where η, ν range over all unit vectors in T 1,0M , and
Bisecω(η,ν) := R(η, η̄, ν, ν̄) is the bisectional curvature associated to the curvature tensor R of (M,ω). This estimate was
proved by Aubin [1] and Yau [18] and was used by them to solve the complex Monge–Ampère equation (1) when μ < 0 and
μ � 0, respectively, and by Tian [16] when μ > 0 under a necessary and sufficient assumption on the Mabuchi K-energy
functional [10].

We announce here a new continuity method for the degenerate complex Monge–Ampère equation, the Ricci continuity
method, that has the advantage that it depends on an upper bound for the bisectional curvature rather than a lower one.
This provides a new and unified proof of existence of solutions for (1) when M is smooth for all μ (and this observation
goes back to [14]), but as we explain below, its real power lies in the fact that it is applicable in a range of interesting
problems with singular background geometries. This Ricci continuity path is given by

ωn
ϕ(s) = ωne fω−sϕ(s), s ∈ (−∞,μ], (2)

regardless of the sign of μ. This was already introduced in [14, p. 1533] in the context of Ricci iteration; indeed, for each
fixed s, Eq. (2) is precisely the backward Euler discretization of the volume normalized Ricci flow ∂ω(t)

∂t = −Ricω(t)+μω(t)

at time μ − 1
s .

Theorem 1.1. Let ϕ(s) ∈ C4(M) be a solution of (2), with s � S > −∞. There exist constants C , α > 0 depending only on M, n,
∫

M ωn,
‖ϕ(s)‖C0(M) , S and maxM Bisecω, such that ‖ϕ(s)‖C2,α(M,ω) � C .

As noted above, this result gives a new proof of the Calabi–Yau theorem, but our main application of this result is to the
construction of Kähler–Einstein metrics with an edge singularity along a divisor. In that setting, the Aubin–Yau estimates do
not apply in the most interesting cases.

We begin with some definitions. Let D = D1 + · · · + Dk ⊂ M be a divisor with simple normal crossings (SNC), where
each Di is a smooth component. Let si be a holomorphic section of the line bundle associated to Di (and vanish-
ing precisely along Di ), and hi a smooth hermitian metric on this line bundle. Fix β = (β1, . . . , βk) ∈ (0,1]k , and set
ωβ := ω0 + ε

∑k
i=1

√−1∂∂̄(|si |2hi
)βi . We refer to ωβ as the model edge form with angle 2πβi along Di . It is easy to check

that for 0 < ε � 1, ωβ is a Kähler current.
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Definition 1.2. A Kähler current ω is called a Kähler–Einstein edge (KEE) current with Ricci curvature μ and cone angle
2πβi along each Di if C−1ωβ � ω � Cωβ for some C > 0, and in addition, Ricω − ∑

i(1 − βi)[Di] = μω, where [D] is the
current associated to integration along D .

Tian [15] conjectured in 1994 that KEE metrics always exist when μ < 0 assuming that c1(M) − ∑
i(1 − βi)c1(LDi ) < 0.

More recently, Donaldson [7] conjectured the existence of KEE metrics with 0 < μ = β � 1 when M is Fano and D is
a smooth (i.e., k = 1) anticanonical divisor. The following result confirms these conjectures of Tian and Donaldson. The
statement in the positive case uses a generalization of Mabuchi’s K-energy to this setting.

Theorem 1.3. Let Ω ∈ H2(M,R) be a Kähler class, μ � 0, β ∈ (0,1]k, with c1(M) − ∑
i(1 − βi)c1(LDi ) = μΩ . Then there exists a

KEE metric with Ricci curvature μ representing the class Ω with angle 2πβi along each Di . The same conclusion also holds when μ > 0
provided the twisted Mabuchi K-energy is proper. Moreover, the KEE metric and its curvature tensor admit a complete polyhomogeneous
asymptotic expansion near D.

A proof of the special case of Theorem 1.3 when D is smooth appears in [9]; when D is smooth, but also β ∈ (0,1/2]
(this is the simpler “orbifold regime”) and μ = 0 the existence part of this theorem was also obtained by Brendle [4]
using the Aubin–Yau estimate and Donaldson’s work [8]. Finally, in the special case of Theorem 1.3 when μ � 0 and βi ∈
(0,1/2] for all i, the existence part was obtained by an approximation technique by Campana–Guenancia–Pǎun [6]. Both
[6] and [4] appeared simultaneously with [9]. However, if any βi > 1/2, then by [9] the reference form ωβ no longer
has bisectional curvature bounded from below, which underlines the importance of Theorem 1.1. The regularity part of
this theorem (existence of polyhomogeneous expansion) turns out to play a crucial role in connecting the openness and
closedness parts of the continuity argument. In addition, the linear estimates in [9] and [12] are independent of and more
detailed than those in [8].

We now give some examples where this theorem may be applied. Recall that M is called a minimal manifold if the
canonical bundle K M is nef, i.e., KM · C � 0 for every holomorphic curve C ⊂ M . In particular, any Kähler manifold with
c1(M) < 0 is minimal. By the Aubin–Calabi–Yau theorem, when c1(M) < 0 there is a smooth KE metric with negative Ricci
curvature. Theorem 1.3 gives the following generalization:

Corollary 1.4. Assume that M is a minimal projective manifold. Then M admits a KEE metric of negative Ricci curvature, and with any
angle in (0,2π).

Proof. By Bertini’s theorem, M admits many smooth ample divisors. For any such divisor D , Kleiman’s criterion gives that
c1(M) − (1 − β)c1(LD) < 0 for any β ∈ (0,1), so we may apply Theorem 1.3.

Tian [15] observed that such bendings yield a generalization of the Bogomolov–Miyaoka–Yau inequality, and indeed using
Theorem 1.3 this can be carried through.

As for the case μ > 0, we first state the following corollary to Theorem 1.3:

Corollary 1.5. Let M be a Fano manifold and assume D is a smooth anticanonical divisor in M. Then there exists some β0 > 0 such
that for all β ∈ (0, β0) there exists a KEE metric with Ricci curvature β and angle 2πβ along D.

In related work [3], Berman proves the existence of a weak solution ϕ ∈ L∞ to (1), but gives neither C2,α a priori
estimates nor higher regularity near D . However, our proof of Corollary 1.5 relies on Berman’s observation that when
0 < μ = β � 1 the twisted K-energy is proper, so that Theorem 1.3 applies.

It is well known that not all Fano manifolds admit a KE metric and it is a subtle and deep question to determine which
ones do [16,7]. Corollary 1.5 implies that all Fano manifolds with a smooth anticanonical divisor admit a KEE metric with
positive Ricci curvature. Such a divisor exists for many known examples, and, by results of Shokurov, this is always the case
for Fano 3-folds. However, this is open in general (cf. the “Elephant conjecture” of Iskovskikh and Reid).

Even without the assumption on the existence of a smooth or SNC anticanonical divisor, our results imply that Fano
manifolds always admit KEE metrics with zero or negative Ricci curvature. For example,

Corollary 1.6. CP2 admits KEE metrics of constant positive, zero, and negative Ricci curvature.

Allowing an edge along D acts as a sort of boundary condition for the problem and provides just enough flexibility to
obtain a more robust existence theory, but is still sufficiently constrained that we see interesting rigidity phenomena.

This entire set of questions about the existence and behavior of KEE metrics as 2πβ ↗ 2π , is reminiscent of, and indeed
partially inspired by, a set of questions initiated by Thurston concerning hyperbolic ‘conifolds’, which are 3-dimensional
hyperbolic pseudomanifolds bent along a (possibly singular) geodesic network. This theory is now rather well understood,
see [13] for the newest progress. Passing to this limit in the KEE case when μ > 0 is a key motivation for Donaldson’s
conjecture [7], though many difficult geometric and analytic problems remain.
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2. Outline of the proofs

The proof of Theorem 1.1 appears in [9]. The key component is the use of a geometric inequality which can be traced
back to Chern and Lu to obtain the Laplacian estimate, together with the facts that along (2) the Ricci curvature is bounded
below by s and the twisted K-energy is monotonically decreasing, [14]. We turn to the proof of Theorem 1.3. A complete
proof when D is smooth (k = 1) can be found in [9], and the general case will appear in [12]. We sketch here some of the
extra ideas needed when k > 1.

We use the continuity path (2). The two main issues to address are the a priori estimates for the closedness part of the
argument, and the tools from linear analysis needed to obtain openness along the path. The third issue is the existence of a
solution when s � −1. It involves a perturbation argument similar to the one by Wu [17], but more subtle, since it has to
be independent of any curvature assumptions.

The standard Moser iteration argument can be adapted to this singular setting to give the a priori C0 estimate. Thus,
following [18], ‖ϕ(s)‖C0(M) is bounded, for S � s � 0, in terms of the Poincaré and Sobolev constants of ωβ and the C0

norm of fω , and these quantities are in turn controlled. More generally, adapting estimates of Tian [16] to the edge setting,
we show that ‖ϕ(s)‖C0(M) is bounded for s ∈ [0,μ] if one assumes properness of the twisted Mabuchi K-energy. To carry
this through we show that the edge geometries along the continuity path satisfy a uniform doubling measure property,
which can be shown to imply a uniform Sobolev and Poincaré inequalities.

To estimate higher derivatives, we extend Theorem 1.1 to the edge setting. This requires some discussion of function
spaces. Let Ck,α

e denote the ‘edge’ Hölder space, which is defined as the usual geometric Ck,α spaces with respect to the
complete metric that near D is of the form ωβ/(|s1|h1 · · · |sk|hk )

2. Associated to this space is the Hölder–Friedrichs domain

D0,α
e = {

u ∈ C2,α
e : �ωβ u ∈ C0,α

e

}
.

This comes equipped with a norm on 2+α derivatives of u, albeit with certain loss of control near D . There is now a version
of Theorem 1.1 that gives an a priori estimate on ‖ϕ(s)‖D0,α

e
that depends on the same quantities as in that theorem. The

following lemma then suffices for concluding the closedness:

Lemma 2.1. The bisectional curvature of ωβ is bounded from above on M \ D.

This upper bound is easy when all βi � 1/2 since the entire curvature tensor is bounded then. The proof in the general
case requires a lengthy computation, generalizing the one in [9] obtained by the second named author and C. Li when D is
smooth, but is even more delicate near the intersection of the divisors.

Finally we discuss openness. The main issue is to give a precise description of regularity of elements of D0,α
e . Since the

Laplacian �ωβ associated to ωβ is singular along D , it is rarely true that �ωβ is bounded if we only know that u ∈ C2,α
e , so

the property of lying in D0,α
e requires that u have some special regularity properties near D . The first result is as follows.

Let G denote the Green operator for �ωβ and K its nullspace in L2(M,ωn
β). We prove that D0,α

e := G(C0,α
e ) ⊕ K = {u =

G f : f ∈ C0,α
e } ⊕ K .

To use this effectively for the nonlinear problem, it is necessary to understand which ‘Riesz potential operators’, i.e.
compositions of the form ∇ ◦ G or ∇2 ◦ G are bounded on C0,α

e . A very important insight used by Donaldson [8] is that
since �ωβ involves only mixed complex derivatives ∂2

zi z j
, it is only necessary to understand the compositions of these

with G , and he proves that ∂2
zi z j

◦ G is bounded. However, he uses Hölder spaces based on the incomplete metric ωβ , so

his estimates are not strictly comparable to ours. Indeed, the edge Hölder spaces have several advantages. For example, in
the edge space setting we can pass directly from Laplacian to C2,α a priori estimates using a simple rescaling argument
and quoting the standard Evans–Krylov interior estimates. What makes this fit into the overall scheme of the proof is the
regularity result, that solutions of the complex Monge–Ampère equation are necessarily polyhomogeneous, and hence lie in
the Hölder–Friedrichs spaces associated to ωβ too.

The tool used in [9] to prove linear mapping properties and regularity results for the simple edge case, i.e., k = 1, is
the calculus of pseudodifferential edge operators [11]. The analysis developed in [8] provides an easier path to some of the
results in [11], but is perhaps not strong enough to prove all of the facts needed in the full existence proof. Unfortunately an
equally strong theory of pseudodifferential operators associated to crossing edge singularities had not been developed yet,
so one of the tasks in [12] is to develop such a theory. There are a number of simplifying features in this complex geometric
setting to make this more tractable than the development of a full ‘iterated edge’ calculus, but unfortunately, analysis on a
singular space with multi-level stratification is of necessity rather complicated. We conclude this Note by briefly describing
some aspects of this calculus for the special case k = 2, which contains all the general ideas but is less combinatorially
complicated.

The first step is to perform a real blowup of M around D . When k = 1 this is the space M̃ obtained by replacing the
points of D by their spherical normal bundles, which are just circles. Thus M̃ is a manifold with boundary, where ∂ M̃ is
the total space of a fibration over D with S1 fibers, and the distance function r to D is a boundary defining function. When
k = 2, so D = D1 ∪ D2, the normal bundles of these two components are disjoint away from 0, so we can blow up each Di
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as above independently of one another. In this case, the resulting space M̃ is a manifold with corners up to codimension
two; the two distance functions r j , j = 1,2, to D j are now defining functions for the two boundary hypersurfaces ∂ j M̃;
each ∂ j M̃ is again an S1 bundle over D j \ (D1 ∩ D2), while the corner ∂12M̃ is an S1 × S1 bundle over D1 ∩ D2.

The operator �ωβ is singular at the boundary and corners of M̃ , so following original ideas of Melrose (in a different
setting) we define a space of degenerate pseudodifferential operators adapted to this geometry to analyze the Green function
G of �ωβ . A crossing edge pseudodifferential operator A on M̃ is characterized by the regularity of its Schwartz kernel, which
is a distribution on M̃2. To specify this regularity efficiently, we define a new crossing edge double space M̃2

ce, itself a real
blowup of M̃2 along certain submanifolds of the boundary and corners. When k = 1 it suffices to blow up the diagonal of
(∂M̃)2. When k = 2 the analogous submanifolds for each D j are no longer transverse, so we first blow up their intersections.
Thus M̃2

ce is obtained from M̃ by an iterated blowup, first of this intersection of diagonals of the boundary faces and then
of these diagonals. There is a blowdown map b : M̃2

ce → M̃2.
We say that an operator A is a pseudodifferential crossing edge operator if its Schwartz kernel is the pushforward under

the blowdown map b of a distribution on M̃2
ce which has a standard pseudodifferential singularity along the diagonal of

this product and polyhomogeneous expansions along each of the boundary hypersurfaces and product type expansions at
the corners of M̃2

ce. These various blowups separate the different regions where �β and its Green function G have different
types of expansions. The fact that we are working with distributions with polyhomogeneous expansions allows us to carry
out iterative parametrix constructions in this calculus through a generalization of the one for the simple edge case in [11].
The upshot of this entire development is:

Theorem 2.2. Let � be the Laplace operator associated to the reference metric ωβ , or to any solution of the complex Monge–Ampère
operator along the continuity path (2). Then the Green function G corresponding to the Friedrichs extension of � is an element of the
pseudodifferential crossing edge calculus.

In the interest of space, we do not introduce the notation necessary to give a detailed statement of this result. The paper
[9] contains a substantial amount of expository material about the corresponding statement in the simple edge case, and
the result in this more general setting is in the same spirit, although involving many more technicalities.

The proof of this theorem rests on an elliptic parametrix construction which takes into account the degenerate structure
of � at each of the boundary faces. Having determined the structure of G , it is then easy to show that the Riesz potentials
∂2

zi z j
◦ G are again edge operators of the same type, so their boundedness on the edge Hölder spaces can be deduced from

general boundedness theorems for general pseudodifferential crossing edge operators.
These pseudodifferential calculi are, at heart, simply effective formalisms to pass from the structure of the Green function

of the Laplacian for the model problem, i.e., on the product space Cβ1 (S1) × · · · × Cβk (S1) × R
2n−2k , to that of the Green

function for the Laplacian of a crossing edge metric on M . However, this passage should not be regarded as routine since it
is important in all the applications described above to know the precise polyhomogeneous structure of G , which require a
much finer analysis than if we just ask for simpler bounds on this operator.
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