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In this Note we prove large deviations principles for the Nadaraya–Watson estimator of the
regression of a real-valued variable with a functional covariate. Under suitable conditions,
we show pointwise and uniform large deviations theorems.

© 2011 Published by Elsevier Masson SAS on behalf of Académie des sciences.

r é s u m é

L’objet de cette Note est d’établir un principe de grandes déviations ponctuel et un principe
de grandes déviations uniforme pour l’estimateur à noyau de la régression sur des données
fonctionnelles.

© 2011 Published by Elsevier Masson SAS on behalf of Académie des sciences.

1. Introduction

Let {(Yi, Xi), i � 1} be a sequence of independent and identically distributed random vectors. The random variables Yi
are real, with E|Y | < ∞, and the Xi are random vectors with values in a semi-metric space (X ,d(·,·)).

Consider now the functional regression model,

Yi := E(Y |Xi) + εi = r(Xi) + εi i = 1, . . . ,n, (1)

where r is the regression operator mapping X onto R, and the εi are real variables such that, for all i, E(εi |Xi) = 0 and
E(ε2

i |Xi) = σ 2
ε (Xi) < ∞. Note that in practice X is a normed space which can be of infinite dimension (e.g., Hilbert or

Banach space) with norm ‖ · ‖ so that d(x, x′) = ‖x − x′‖, which is the case in this paper.
Ferraty and Vieu [4] provided a consistent estimate for the nonlinear regression operator r, based on the usual finite-

dimensional smoothing ideas, that is

r̂n(x) :=
∑n

i=1 Yi K
( ‖x−Xi‖

hn

)
∑n

i=1 K
( ‖Xi−x‖

hn

) , (2)

where K (·) is a real-valued kernel and hn the bandwidth, is a sequence of positive real numbers converging to 0 as n → ∞.
Note that the bandwidth hn depends on n, but we drop this index for notational convenience. In what follows Kh(u) stands
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for K ( u
h ). The estimator defined in (2) is a generalization to the functional framework of the classical Nadaraya–Watson

regression estimator. The asymptotic properties of this estimate have been studied extensively by several authors, we cite
among others [7], for a complete survey see the monograph by Ferraty and Vieu [5].

There exists a wide large deviations literature, for an extensive overview on the area we refer to the monograph of
Dembo and Zeitouni [3]. The large deviations behavior of the Nadaraya–Watson estimate of the regression function, have
been studied at first by Louani [12], sharp results have been obtained by Joutard [9] in the univariate framework. In the
multidimensional case Mokkadem et al. [13] obtained pointwise large and moderate deviations results for the Nadaraya–
Watson and recursive kernel estimators of the regression.

Large deviations results have many implications in statistical analysis, we refer to [1] for a good survey on the subject.
The main concern in the nonparametric setup is with asymptotic efficiency and the inaccuracy rate. These questions have
been investigated in [11] for the density case. As an application of large deviations results, Louani [12] gives the inaccuracy
rate in conditional distribution function estimation. Another application can be found in [2], where the authors provide
Bahadur efficiency of symmetry tests. We refer to the monograph of Nikitin [14] for an account of results on the asymptotic
efficiency.

All the results of large deviations in nonparametric regression only dealt with the case of scalar covariates. In this Note,
our aim is to obtain such results in the functional case. Inaccuracy rate in nonparametric regression estimation on functional
data will be considered in a future work. We are also interested to obtain a minimax Bahadur-type risk of estimating a
nonparametric regression function, in the spirit of Korostelev [10].

In this Note, we are interested in the problem of establishing large deviations principles of the regression operator
estimate r̂n(·). The results stated in the Note deal with pointwise and uniform large deviations probabilities of r̂n(·) from r(·).

2. Results

Let Fx(h) = P [‖Xi − x‖ � h], be the cumulative distribution of the real variable W i = ‖Xi − x‖. As in [7], let ϕ(·) be the
real valued function defined by

ϕ(u) = E
{

r(X) − r(x)
∣∣ ‖X − x‖ = u

}
. (3)

Before stating our results, we will consider the following conditions:

(C.1) The kernel K is of class C 1 with continuous derivative on the compact support [0,1].
(C.2) The operator r verifies the following Lipschitz property:

There exists β such that ∀(u, v) ∈ X 2, ∃C,
∣∣r(u) − r(v)

∣∣ � C‖u − v‖β . (4)

(C.3) There exist three functions �(·), φ(·) (supposed increasing and strictly positive and tending to zero as h goes to zero)
and ζ0(·) such that
(i) Fx(h) = �(x)φ(h) + o(φ(h)),

(ii) for all u ∈ [0,1], limh→0
φ(uh)
φ(h)

=: limh→0 ζh(u) = ζ0(u).
(C.4) ϕ′(0) exists.

Remark 1. There exist many examples fulfilling the decomposition mentioned in condition (C.3), see for instance Proposi-
tion 1 in [7]. The conditions stated above are classical in nonparametric estimation for functional data, we refer to [7] and
the references therein. However this condition is somewhat restrictive but is necessary to prove our results, we refer among
others to [8] for less restrictive conditions.

Let now introduce the following functions:

I(t) = tλ

1∫
0

K ′(u)exp
{−tλK (u)

}
ζ0(u)du; (5)

Γ +
x (λ) = inft>0{�(x)I(t)}; Γ −

x (λ) = inft>0{�(x)I(−t)} and Γx(λ) = max{Γ +
x (λ);Γ −

x (λ)}.
Let x be an element of the functional space X and λ > 0. Our first theorem deals with pointwise large deviations

probabilities.

Theorem 2.1. Assume that the conditions (C.1)–(C.4) are satisfied. If nφ(h) → ∞, then for any λ > 0 and any x ∈ X , we have

(a) lim
n→∞

1

nφ(h)
log P

(
r̂n(x) − r(x) > λ

) = Γ +
x (λ), (6)

(b) lim
n→∞

1
log P

(
r̂n(x) − r(x) < −λ

) = Γ −
x (λ), (7)
nφ(h)
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(c) lim
n→∞

1

nφ(h)
log P

(∣∣r̂n(x) − r(x)
∣∣ > λ

) = Γx(λ). (8)

To establish uniform large deviations principles for the regression estimator we need the following additional assump-
tions. Let C be some compact subset of X and B(zk, ξ) a ball centered at zk ∈ X with radius ξ , such that for any ξ > 0,

C ⊂
τ⋃

k=1

B(zk, ξ), (9a)

∃α > 0, ∃C > 0, τ ξα = C . (9b)

Before stating the theorem about the uniform version of our result, we introduce the following function:

g(λ) = sup
x∈C

Γx(λ). (10)

Theorem 2.2. Assume that the conditions (C.1)–(C.4) are satisfied. If nφ(h) → ∞, then for any compact set C ⊂ X satisfying condi-
tions (9) and for any λ > 0,

lim
n→∞

1

nφ(h)
log P

(
sup
x∈C

∣∣r̂n(x) − r(x)
∣∣ > λ

)
= g(λ). (11)

Remark 2. (i) The above conditions on the covering of the compact set C by a finite number of balls, the geometric link
between the number of balls τ and the radius ξ are necessary to prove uniform convergence in the context of functional
nonparametric regression and many functional nonparametric settings, see the discussion in [6].

(ii) More recently, Ferraty et al. [8] proved a very nice result about the uniform almost complete convergence of r̂n(·) by
use of Kolmogorov’s ε-entropy of C . It will be of interest to prove Theorem 2.2, under their conditions.
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