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Let p be a prime integer. For any integers 1 � s � r, Alg pr ,ps denotes the class of central
simple algebras of degree pr and exponent dividing ps . For any s < r, we find a lower
bound for the essential p-dimension of Alg pr ,ps . Furthermore, we compute an upper
bound for Alg8,2 over a field of characteristic 2. As a result, we show ed2(Alg4,2) =
ed(Alg4,2) = 3 and 3 � ed(Alg8,2) � 10 over a field of characteristic 2.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Soit p un nombre premier. Pour toutes nombres entiers 1 � s � r, on note Alg pr ,ps la
classe des algèbres simples centrales de degré pr et d’exposant au plus ps . Pour tous s < r,
nous trouvons une borne inférieure pour la p-dimension essentielle de Alg pr ,ps . De plus,
nous calculons une borne supérieure pour Alg8,2 sur un corps de caractéristique 2. En
conséquence, on montre que ed2(Alg4,2) = ed(Alg4,2) = 3 et 3 � ed(Alg8,2) � 10 sur un
corps de caractéristique 2.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

A numerical invariant of an algebraic group, called the essential dimension, was introduced by Reichstein and was gener-
alized to an algebraic structure by Merkurjev. We refer to [10] for the definition of essential dimension. For a given prime p,
we denote by ed and edp the essential dimension and essential p-dimension, respectively.

Let F be a field and p a prime integer. For any integers 1 � s � r, let Alg pr ,ps : Fields/F → Sets be the functor from
the category Fields/F of field extensions over F to the category Sets of sets, taking a field extension E/F to the set
of isomorphism classes of central simple E-algebras of degree pr and exponent dividing ps . Then, there is a natural bi-
jection between H1(E,GLpr /μps ) and Alg pr ,ps (E) (see [2, Example 1.1]), thus we have ed(Alg pr ,ps ) = ed(GLpr /μps ) and
edp(Alg pr ,ps ) = edp(GLpr /μps ).

Let F be a field of characteristic p. For a ∈ F and b ∈ F × , the p-symbol [a,b) is a central simple F -algebra generated by
u and v satisfying up − u = a, v p = b and vu = uv + v . Let Dec pr : Fields/F → Sets be the functor taking a field extension
E/F to the set of isomorphism classes of the tensor product of r p-symbols over E .

Some exact values of ed(Alg pr ,ps ) and edp(Alg pr ,ps ) have been computed (see [11,3,14], and [1]). However, all of
them were calculated over a field F of char(F ) �= p. In Section 2, for any integers r > s, we find a new lower bound for
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edp(Alg pr ,ps ) in char(F ) = p. In Section 3, we compute upper bounds for Dec pr and Alg8,2 in char(F ) = p and char(F ) = 2,
respectively. As a result, we get:

Theorem 1.1. Let F be a field containing the field with 4 elements. Then

ed2(Alg4,2) = ed(Alg4,2) = ed2(GL4/μ2) = ed(GL4/μ2) = 3.

Proof. It follows from Corollary 2.2 that 3 � ed2(Alg4,2) � ed(Alg4,2). By a Theorem of Albert, we have Dec4 = Alg4,2 for
p = 2, thus we obtain ed(Alg4,2) � 3 by Proposition 3.2. �

Corollary 2.2 and Proposition 3.4 give the following:

Theorem 1.2. Let F be a field of characteristic 2. Then 3 � ed(Alg8,2) = ed(GL8/μ2) � 10.

2. Lower bound

Initially, the following theorem is proved under the additional condition that char(F ) does not divide exp(A) in [5]. In a
subsequent paper [9, Theorem 4.2.2.3], this condition is removed:

Theorem 2.1 (de Jong). Let E be a field of transcendental degree 2 over an algebraically closed field F . Then, for any central simple
algebra A over E, ind(A) = exp(A).

As an application of Theorem 2.1, we have the following result:

Corollary 2.2. Let F be a field and p a prime. For any integers 1 � s < r, edp(Alg pr ,ps ) � 3.

Proof. By [10, Proposition 1.5], we may assume that F is algebraically closed. It follows from [13, Lemma 9.4(a)] that
edp(Alg pr ,ps ) � 2 for any integers r, s, and any prime p. Note that for any integers 1 � s < r there exist a field extension
L/F and a division L-algebra D of ind(D) = pr and exp(D) = ps by the proof of [12, §19.6, Theorem] together with Artin–
Schreier theory. Let K be a field extension of F and A a central simple algebra over K of ind(A) = pr and exp(A)|ps . Let
E be a field extension of K of degree prime to p. As ind(A) is relatively prime to [E : K ], we have ind(AE ) = ind(A) = pr .
Suppose that AE � B ⊗ E for some B ∈ Alg pr ,ps (L) and tr.degF (L) = 2. Then, by Theorem 2.1, we have ind(B) = exp(B). As
pr = ind(AE )| ind(B) = exp(B), we get pr |exp(B). But this contradicts to exp(B)|ps . �
Remark. The above lower bound 3 is much less than the best known lower bounds (see [3, Theorem]), but these lower
bounds are valid only for char(F ) �= p. Hence, our main application of Corollary 2.2 is for the case of char(F ) = p.

3. Upper bounds

Lemma 3.1. (See [4, Example 2.3 and p. 298].) Let r � 1 be an integer and F a field containing the field with pr elements. Then
ed((Z/pZ)r) = 1.

Proposition 3.2. Let F be a field containing the field with pr elements. Then ed(Dec pr ) � r + 1.

Proof. Let A = ⊗r
i=1[ai,bi) ∈ Dec pr (E) for a field extension E/F . As ed((Z/pZ)r) = 1 by Lemma 3.1, there exists a sub-

extension E0/F of E/F and ci ∈ E0 for all 1 � i � r such that ci ≡ ai mod ℘(E) and tr.degF (E0) � 1. Therefore, A is defined
over L = E0(b1, . . . ,br) and tr.degF (L) � r + 1. Hence, ed(A) � r + 1 and ed(Dec pr ) � r + 1. �

The upper bound 8 (indeed, the exact value by [3, Corollary 8.3]) for ed(Alg8,2) over a field F of characteristic different
from 2 was determined in [2, Theorem 2.12]. We use a similar method to find an upper bound for ed(Alg8,2) over a field F
of characteristic 2. From now on we assume that char(F ) = 2.

For a commutative F -algebra R , a ∈ R and b ∈ R× we write [a,b)R for the quaternion algebra R ⊕ Ru ⊕ R v ⊕ R w with
the multiplication table u2 + u = a, v2 = b, uv = w = vu + v . The class of [a,b)R in the Brauer group Br(R) will be denoted
by {a,b} = {a,b}R . Let a ∈ R and T = R[α] := R[t]/(t2 + t + a) with α2 = α + a the quadratic extension of R , i.e., T /R is a
Z/2Z-Galois algebra. We write NR(a) for the subgroup of R× of all elements of the form x2 + xy + ay2 with x, y ∈ R . If
b ∈ NR(a), then the quaternion algebra [a,b)R is isomorphic to the matrix algebra M2(R) by the proof of [8, Theorem 6].
We shall need the following result:

Lemma 3.3. Let R be a commutative F -algebra, a,b ∈ R, T = R[α] := R[t]/(t2 + t + a) and x + yα ∈ T × such that x2 + xy + ay2 =
u2 + uv + bv2 for some u, v ∈ R. If v + y ∈ R× , then (v + y)(x + yα) ∈ NT (b). In particular, {b, x + yα}T = {b, v + y}T .
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Proof. The result comes from the following equality (x + yα + u)2 + (x + yα + u)v + bv2 = (x + yα)2 + (x + yα)v + u2 +
uv + bv2 = (x + yα)2 + (x + yα)v + x2 + xy + ay2 = (x + yα)(v + y). �

Rowen extended Tignol’s result [17] to a field of characteristic 2. Following Rowen’s construction [15], we find a ver-
sal Azumaya algebra for Alg8,2, i.e., the corresponding GL8/μ2-torsor is versal (see [6, Definition 5.1 and Remark 5.8] or
[2, Section 1.4]). Consider the affine space A

13
F with coordinates a,b, c,d,e,u,v,w,x,y, z,m,n and define the following

functions:

f = xz + wz + xy,

g = wy + xza,

r = (
g2 + gf + f2a + m2 + mn

)
,

h = (
w2 + wx + x2a + 1 + u + u2d

)
,

l = (
y2 + yz + z2a + 1 + v + v2d

)
,

p = (u + x)(v + z)(n + f),

q = abcdep
(
w2 + wx + x2a

)(
y2 + yz + z2a

)(
g2 + gf + f2a

)
.

Let X = Spec(R) be the affine scheme, where

R = F
[
a,b, c,d,e,u,v,w,x,y, z,m,n,q−1]

/
〈
bu2 + h, cv2 + l,dn2 + r

〉
.

Let T = R[α] and S = R[α,β,γ ] with α2 = α + a, β2 = β + b, γ 2 = γ + c. Consider the Azumaya R-algebra

B′ = [a,e)R ⊗ [b,x + u)R ⊗ [c, z + v)R ⊗ [d,p)R . (1)

By Lemma 3.3, we get (x + u)(w + xα) ∈ NT (b + d) ⊂ N S(d), (z + v)(y + zα) ∈ NT (c + d) ⊂ N S(d), and (n + f)(w +
xα)(y + zα) ∈ NT (d) ⊂ N S(d). It follows from (1) that {B′}T = {b,w + xα} + {c,y + zα} in Br(T ). Since p ∈ N S(d), [d,p)S is
isomorphic to the matrix algebra M2(S). In particular,

M2(R) ⊂ M2(S) � [d,p)S ⊂ B′

and hence B′ � M2(B) for the centralizer B of M2(R) in B′ by the proof of [7, Theorem 4.4.2]. Then B is an Azumaya
R-algebra of degree 8 that is Brauer equivalent to B′ by [16, Theorem 3.10].

Proposition 3.4. The Azumaya algebra B is versal for Alg8,2 . In particular, ed(Alg8,2) � 10.

Proof. Let A ∈ Alg8,2(K ), where K is a field extension of F . We shall find a point p ∈ X(K ) such that A � B(p), where
B(p) := B ⊗R K with the F -algebra homomorphism R → K given by the point p.

Following Rowen’s construction, there is a triquadratic splitting extension K (α,β,γ )/K of A such that α2 + α = a,
β2 + β = b, and γ 2 + γ = c for some a,b, c ∈ K . Let L = K (α), so {A}L = {b, s} + {c, t} in Br(L) for some s = w + xα, and
t = y + zα ∈ L× . We have

{
b, w2 + wx + x2a

}
K = {

d, w2 + wx + x2a
}

K = {
d, y2 + yz + z2a

}
K = {

c, y2 + yz + z2a
}

K for some d ∈ K ,

so {b + d, w2 + wx + x2a} = {c + d, y2 + yz + z2a} = {d, (w2 + wx + x2a)(y2 + yz + z2a)} = 0. Hence w2 + wx + x2a =
u′ 2 + u′u + u2(b + d), y2 + yz + z2a = v ′ 2 + v ′u + v2(c + d), and (w2 + wx + x2a)(y2 + yz + z2a) = m2 + mn + n2d for some
u, u′, v, v ′,m,n in K . Moreover, we may assume that u′ �= 0. Replacing w , x and u by wu′ , xu′ and u′u respectively, we may
assume that u′ = 1. Similarly, we can assume that v ′ = 1.

We also may assume that u �= x by replacing u by u/(b+d). Similarly, we can assume that v �= z and n+xz+ wz+xy �= 0.
It follows from Lemma 3.3 that {b + d, w + xα} = {b + d, u + x}, {c + d, y + zα} = {c + d, z + v}, and {d, (w + xα)(y + zα)} =
{d,n + xz + wz + xy} in Br(L). Hence, {A} = {a, e} + {b, u + x} + {c, z + v} + {d, (u + x)(z + v)(n + xz + wz + xy)} in Br(K )

for some e ∈ K × . Let p be the point (a,b, c,d, e, u, v, w, x, y, z,m,n) in X(K ). We have {B(p)} = {A} and hence B(p) � A
as B(p) and A have the same dimension.

Thus, there is surjective morphism X → Alg8,2. By [10, Proposition 1.3], ed(Alg8,2) � dim(X) = 10. �
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