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A (vector space) basis B of a Lie algebra is said to be very nilpotent if all the iterated
brackets of elements of B are nilpotent. In this Note, we prove a refinement of Engel’s
Theorem. We show that a Lie algebra has a very nilpotent basis if and only if it is a
nilpotent Lie algebra. When g is a semisimple Lie algebra, this allows us to define an ideal
of S((gn)∗)G whose associated algebraic set in gn is the set of n-tuples lying in a same
Borel subalgebra.
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r é s u m é

Une base (d’espace vectoriel) B d’une algèbre de Lie est dite fortement nilpotente si tous
les crochets itérés des éléments de B sont nilpotents. Dans cette Note, on démontre une
version améliorée du théorème d’Engel. On montre qu’une algèbre de Lie admet une
base fortement nilpotente si et seulement si c’est une algèbre nilpotente. Lorsque g est
une algèbre de Lie semi-simple, ceci nous permet de définir un idéal de S((gn)∗)G dont
l’ensemble algèbrique associé dans gn est l’ensemble des n-uplets vivants dans une même
sous-algèbre de Borel.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and notation

Let g be a Lie algebra defined over an algebraically closed field k of characteristic 0. The adjoint action of z ∈ g : x �→ [z, x]
is denoted by adz ∈ gl(g). If h ∈ g, we denote the centralizer of h in g by gh . When V is a vector space over k, and A ⊂ V ,
〈A〉 stands for the linear subspace spanned by A. The symmetric algebra on V is denoted by S(V ). Any subset J ⊂ S(V ∗)
defines an algebraic subset V ( J ) := {x ∈ V | f (x) = 0, ∀ f ∈ J }.

For n ∈ N
∗ , let In be the set of morphisms of varieties gn → g defined by induction as follows:

• For i ∈ �1,n�, ((y1, . . . , yn) �→ yi) ∈ In .
• If f , g ∈ In , then [ f , g] := ((y1, . . . , yn) �→ [ f (y1, . . . , yn), g(y1, . . . , yn)]) ∈ In .

In particular, I(y1, . . . , yn) := { f (y1, . . . , yn) | f ∈ In} is the set of iterated brackets in y1, . . . , yn . One defines the depth
map on In by induction:

dep
(
(y1, . . . , yn) �→ yi

) = 1, dep[ f , g] = max{dep f ,dep g} + 1.
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We say that (y1, . . . , yn) is a very nilpotent basis of g if the following two conditions hold:

• (y1, . . . , yn) is a basis of the vector space g,
• adz is nilpotent in gl(g) for any z ∈ I(y1, . . . , yn).

The key result of this Note is:

Proposition 1. g has a very nilpotent basis if and only if g is nilpotent.

Proposition 1 can be seen as a refinement of Engel’s Theorem (see, e.g., [5, 19.3.6]). Its proof is rather technical and is
given in Section 2.

Assume now that g is semisimple. Let G be the algebraic adjoint group of g and let p1, . . . , pd be algebraically indepen-
dent homogeneous generators of S(g∗)G , the set of G-invariant elements of S(g∗). It is well known that V (p1, . . . , pd) is
the nilpotent cone of g (see, e.g., [5, §31]). Let J0 be the ideal of S((gn)∗) = ⊗

n S(g∗) generated by the polynomials pi ◦ f
where f ∈ In . We define J in the same way, adding the constraint dep f � 2. We consider the diagonal action of G on gn

and we have J ⊂ S((gn)∗)G . In Section 3, we show how Proposition 1 implies the following proposition.

Proposition 2.

V( J ) = G.(b × · · · × b), V( J0) = G.(n × · · · × n)

where b is any Borel subalgebra of g with nilpotent radical n.

The question of finding such ideals arises naturally when one studies the diagonal action of G on×n
i=1 g. Indeed, when

n = 1, G.n is the nilpotent cone N . In the n = 2 case, several authors pointed out nice generalizations of N . Let us mention
the set of nilpotent pairs of [3], whose principal elements lie in a finite number of orbits under the diagonal action of G .
Looking at couples of commuting elements, we get the nilpotent commuting variety Cnil(g) := {(x, y) ∈ N × N | [x, y] = 0}
studied in [1,4] and which has the nice property of being equidimensional. Finally, the nilpotent bicone, studied in [2], is the
affine subscheme N ⊂ g × g defined by the polarized polynomials pi(x + ty) = 0,∀t ∈ k. Its underlying set consists of pairs
whose any linear combination is nilpotent. It is a non-reduced complete intersection, which contains Cnil(g) and which has
G.(n × n) as an irreducible component.

2. Very nilpotent basis

The aim of this section is to prove Proposition 1. As a first step, we assume that g is semisimple. We are going to prove
that g has no very nilpotent basis, cf. Corollary 5.

First, we have to state some properties of the characteristic grading of a nilpotent element. Let y be a nilpotent element
of g and embed y in an sl2-triple (y,h, f ). Consider the characteristic grading

g =
⊕

i∈Z

g(h, i)

where g(h, i) = {z ∈ g | [h, z] = iz} and denote by pri the projection g → g(h, i) with respect to this grading. Then g(h,0) = gh

is a subalgebra of g, reductive in g, i.e. adg(h,0)(g) is a semisimple representation.

Lemma 3.

i) An element x ∈ ⊕
i�0 g(h, i) is nilpotent if and only if pr0(x) is nilpotent in g(h,0).

ii) For all i, 〈[g(h, i),g(h,−i)]〉 ⊂ g(0,h) is a Lie subalgebra, reductive in g(0,h).

Proof. i) This follows from the fact that
⊕

i�0 g(h, i) is a parabolic subalgebra of g having g(h,0) as Levi factor.
ii) If i = 0, the result is straightforward. In the following, we assume i �= 0. Embed h in a Cartan subalgebra h. This gives

rise to a root system R(g,h) ⊂ h∗ . Choose a fundamental basis B of the root system R(g,h) such that h lies in the positive
Weyl Chamber associated to B .

Let [x1, y1], [x2, y2] be two elements of [g(h, i),g(h,−i)]. Then,
[[x1, y1], [x2, y2]

] = [[[x1, y1], x2
]
, y2

] + [
x2,

[[x1, y1], y2
]]

.

Since x2 and [[x1, y1], x2] (resp. y2 and [[x1, y1], y2]) are elements of g(h, i) (resp. g(h,−i)), the element [[x1, y1], [x2, y2]]
belongs to 〈[g(h, i),g(h,−i)]〉. By linearity, we deduce that 〈[g(h, i),g(h,−i)]〉 is a Lie subalgebra of g(0,h).

Write Ri := {α ∈ R(g,h) | α(h) = i}. Hence g(h, i) = ⊕
i∈Ri

gα , where gα is the root space associated to α. Then, we see
that
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⊕

Ri,−i

gα ⊂ 〈[
g(h, i),g(h,−i)

]〉 ⊂ h ⊕
⊕

Ri,−i

gα, (1)

where Ri,−i = (Ri + R−i) ∩ R(g,h) = (Ri − Ri) ∩ R(g,h). Since Ri,−i = −Ri,−i , 〈[g(h, i),g(h,−i)]〉 is reductive and it follows
from (1) that its central elements are semisimple in g. Hence the result. �

The main step of the proof of Proposition 1 lies in the following lemma.

Lemma 4. If g has a very nilpotent basis, then there exists a non-zero proper Lie subalgebra k ⊂ g, reductive in g, and a basis
(x1, . . . , xp) of k such that adz is nilpotent in gl(g) for each z ∈ I(x1, . . . , xp).

Proof. Let (y1, . . . , yn) be a very nilpotent basis of g. Each yi is nilpotent. Embed y1 in an sl2-triple (y1,h, f ) and consider
the characteristic grading

g =
⊕

i∈Z

g(h, i).

Denote by i0 the highest weight in this decomposition, i.e. g(h, i0) �= {0} and g(h, i) = {0} for all i > i0. We set k :=
〈[g(h, i0),g(h,−i0)]〉. Since k ⊂ g(0,h) �= g is reductive in g (Lemma 3), there remains to construct the basis (x1, . . . , xp).

The endomorphism ady1 is nilpotent of order i0 + 1 and

(ady1)
i0 :g → g(h, i0)

is surjective. We define z j := adi0
y1 (y j) for j ∈ J := �1,n�. By construction, z j ∈ I(y1, . . . , yn) and (z j) j∈ J is a family spanning

the vector space g(h, i0). On the opposite side, we define y′
k := pr−i0

(yk) for k ∈ J . The family (y′
k)k∈ J spans the vector space

g(h,−i0).
Consider now adz j :g → ⊕

i�0 g(h, i) and define

x j,k := pr0 ◦ adz j (yk) = adz j ◦ pr−i0
(yk), j,k ∈ J 2.

The family (x j,k) j,k spans the vector space k ⊂ g(h,0). The elements adz j (yk) belong to I(y1, . . . , yn). Hence, it follows
from Lemma 3 that the elements x j,k and their iterated brackets are nilpotent. In other words, if (x1, . . . , xp) is a basis of k

extracted from (x j,k) j,k∈ J 2 , then it fulfills the required properties. �
Corollary 5. Let g �= {0} be a semisimple Lie algebra, then g has no very nilpotent basis.

Proof. We argue by induction on dimg. Assume that there is no semisimple w ⊂ g such that 0 �= dimw < dimg having a
very nilpotent basis. Assume that g has one. Then, we define the reductive subalgebra k equipped with the basis (x1, . . . , xp)

as in Lemma 4. By hypothesis k is not semisimple. Hence k has a non-trivial center whose elements are semisimple. There-
fore there must be some i ∈ �1, p� such that xi is not nilpotent and we get a contradiction. �

We are now ready to finish the proof of Proposition 1 in the general case. From now on, we forget the semisimplicity
assumption on g.

First of all, we note that whenever g is nilpotent, then any basis of g is very nilpotent.
Conversely, assume that g is any Lie algebra having a very nilpotent basis (y1, . . . , yn). Let r be the radical of g. The

algebra g/r is semisimple and we can extract a very nilpotent basis (x1, . . . , xp) of g/r from the projection of the elements
yi via g → g/r. It follows from Corollary 5 that g/r = {0}. In other words g is solvable.

Then, one may apply Lie’s Theorem (see, e.g., [5, 19.4.4]). It states that adg ⊂ gl(g) can be seen as a subspace of a set
of upper triangular matrices. In fact, the nilpotency condition on the adyi implies that adg is a subspace of a set of strictly
upper triangular matrices. In particular, g is nilpotent. This ends the proof of Proposition 1.

3. n-tuples lying in a same Borel subalgebra

In this section g is assumed to be semisimple. Let b be a Borel subalgebra of g and n be the nilradical of b. Define two
ideals of S((gn)∗)G by:

J0 := (
pi ◦ f

∣∣ i ∈ �1,d�, f ∈ In
)
, J := (

pi ◦ f
∣∣ i ∈ �1,d�, f ∈ In, dep f � 2

)
,

where p1, . . . , pd are as in the introduction.

Proposition 6.

V( J0) = G.(n × · · · × n),

V( J ) = G.(b × · · · × b).
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Proof. The inclusions V ( J0) ⊃ G.(n × · · · × n) and V ( J ) ⊃ G.(b × · · · × b) are straightforward.
Let us prove the reverse inclusions. Let (y1, . . . , yn) ∈ g and let k ⊂ g be the Lie subalgebra generated by the elements

(y1, . . . , yn). Assume that (y1, . . . , yn) ⊂ V ( J0). Choose a basis of k, (z1, . . . , zp) ∈ (I(y1, . . . , yn))p . Then (z1, . . . , zp) is a
very nilpotent basis of k. It follows from Proposition 1 that k is nilpotent. Hence there exists g ∈ G such that g.n ⊃ k and
(y1, . . . , yn) ∈ g.(n × · · · × n).

Assume now that (y1, . . . , yn) ∈ V ( J ). Arguing along the same lines, one finds that [k, k] is nilpotent. Hence k is solvable
and there exists g ∈ G such that g.b ⊃ k. �

The ideals J0 and J are defined by making use of an infinite number of generators. In fact, if one is more careful with the
arguments of Section 2, it is possible to restrict to a finite number. Let us sketch the proof of this. A rough estimation shows
that, for (y1, . . . , yn) ∈ gn , the subalgebra k generated by (y1, . . . , yn) is spanned by { f (y1, . . . , yn) | f ∈ In, dep f � dimg}
as a vector space. Then, assume that (z1, . . . , zp) is a basis of a semisimple Lie algebra k. One can restrict in the proof of
Lemma 4 and Corollary 5 to the assumption that f (z1, . . . , zp) is nilpotent for dep f � dim k. Defining

J0 := (
pi ◦ f

∣∣ dep f � (dim g)2), J := (
pi ◦ f

∣∣ 2 � dep f � 2(dim g)2),
we claim that:

Claim 7. V ( J ′) = V ( J ) and V ( J ′
0) = V ( J0).
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