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RESUME

Nous présentons de nouvelles estimations dans le probléme de E. Stein sur la restriction
de Fourier a des hyper-surfaces a courbure dans R" ainsi que sur les intégrales oscillatoires
introduites par L. Hérmander.
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Version francaise abrégée

Soit S C R" (n > 3) une hyper-surface compacte et lisse et dont la seconde forme fondamentale est positivement définie.
Soit o sa mesure de surface. Pour p > 2 fixé et R — 0o, dénotons

QY = max || e sy (1)
ol B ={xeR"; |x| <R},
1(§) = / e?7 ¢ 1u(dx) (2)
et le maximum est pris sur toutes les measures w sur S, telles que u < o et || g—g loo < 1. On a I'estimée
ngp) <« R® pourtoute & >0 (3)
si p satisfait la condition
4n+3
> + sin=0 (mod 3),
4n -3
2n+1 .
p> ” +1 sin=1 (mod 3), (4)
4n+1 .
> 20D G2 (mod 3).
2n—1
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Pour n=3, on a (3) pour p > 3, 3.
Considérons ensuite des intégrales oscillatoires de la forme

(T, f)(x) = / €MD) £y dy (5)

loc
oil x (resp. y) sont dans un voisinage de 0 € R" (resp. 0 € R 1),
La fonction de phase v (x, y) a la forme
YY) =x1Y1+ -+ Xn1Yn—1 + % (A, ¥) +0(1xI1y*) + O(Ix*|y[?) (6)

ol A est non-dégénéré.
Si n est pair et A — oo, on a I'estimation

n

_ 2(n+2
IT5 fllp <27 P 8 Flloo Pourtout8>0€tp>$.

(7)

En supposant A positivement (ou négativement) défini, I'inégalité (7) est vrai si p satisfait les conditions (4) (n > 3 arbi-
traire).

1. Fourier transform of measures carried by curved hyper-surfaces

Let S C R" be a smooth, compact hyper-surface with positive definite second fundamental form and let o be its surface
measure (the sphere S = S@=1 and the paraboloid (y, |y|?) C R" are the most important model cases). Denote

Q[(gp) =max || fLllrBy)

where Bg = {x € R"; |x| < R} and the maximum is taken over all measures ( <« o on S such that || ‘;—g lo < 1. We have

Theorem 1.
QP < RE foralle >0 -
provided
4n+3
> 421_3 ifn =0 (mod 3),
2n+1
> . +1 ifn=1 (mod 3), (9)
4 1
S A0 5 (mod 3)
2n—1
and

Theorem 2. For n = 3, (8) holds for p > 3, 3.

Previous best results were due to T. Tao [4], based on an L2-bilinear estimate (going back to the work of T. Wolff),

providing the bound ngp) < Cp for p > @ Thus, apart from the R®-factor, we improve the exponent in all dimensions,

except n =4.
Let us recall E. Stein’s conjecture, stating that Q,gp ) < Cp for p > nzTn1 and which presently is only known to hold for
n=2.

2. Oscillatory integrals of Hormander type

We consider oscillatory integral operators of the form

(T, f)(x) = / MV £ () dy

loc

with real analytic phase function

Y X, Y) =x1Y1+ -+ Xn—1Yn—1 + Xn(Ay, ¥) + O(IxI|y*) + 0(1x1*|y|?) (10)

and A € Mat,;_1(R) non-degenerate.



J. Bourgain, L. Guth / C. R. Acad. Sci. Paris, Ser. 1 349 (2011) 137-141 139

Here x € R" (resp. y € R"™1) are restricted to sufficiently small neighborhoods of 0 and A — oo is a parameter. Note that
if ¢ is linear in x, we recover the Fourier transform of a hyper-surface carried measure as considered in Section 1.

We are interested in the mapping properties of T;. Recall the important L2-inequality (cf. [3])
2(n+1)

-1

For n = 2, Hérmander (providing an alternative proof to a result on Bochner-Riesz multipliers, due to Carleson and Sjolin)
showed in particular that

ITafllp<ch Pl fl2 forp= (11)

_2
IThfllp <CA ?lifllec forp>4 (12)

and raised the question of its higher dimensional generalization for p > ,12?”1 Surprisingly (cf. [2]), the answer turned out to

be negative. For n odd, there are examples of phase functions ¢ such that an inequality of the form

1T fllp < CA Pl flloo (13)

only holds for p > % It was also observed in [2] that this extreme situation cannot occur for n even.
Recently, we proved the following:

Theorem 3. For n even, A — o0

n

- 2(n+2)
1T fllp <272 N flloo forp>=——

and apart from the A¢-factor, Theorem 3 as a general statement is best possible.
Next, let us specify (10) further by requiring A to be positive (or negative) definite.
Theorem 4. (n = 3). For p > %, assuming A positive definite and  a polynomial, one has the inequality

_3
ITxfllp <CA Pl flloo

and there are such examples where the result is best possible (apart from the endpoint).

Theorem 5. (n arbitrary). Assuming A positive definite, the inequality

T3 fllp <272 | fllo foralle >0
holds, for p satisfying (9).

3. Comments on the method

The main ingredient in our analysis is the multilinear inequality from [1]. We briefly recall the result. Given  as in (10),
consider the vectors

Z=Z2(x,y) =0y, (Vx¥) A=+ A By, , (Vxih). (14)
Fix 2 <k <n and open sets U1,..., Uy in the y-domain, such that
1Z(x, y YA A Z(x, yP)| > € (15)

for some ¢ > 0, for all x in the specified neighborhood V of 0 € R" and y™ € Uy, ..., y® € Uy. Then there is the inequality
for p = 2

k k ) k f
H (Hmm) < wﬁ(]‘[ ||fi||2) (16)
i=1 i=1

assuming supp f; C U; (1 <i<k).

Note that if ¢ is linear in x, Z = Z(y) and assumption (15) is a transversality condition for the normal vectors of the
corresponding hyper-surface.

Next, we give a sketch of the proof of Theorem 1 for n =3 and taking for S the paraboloid (y1, y2, %(y% + y%)). The
argument contains the essence of our method. Thus

LP(V)

1
W(x,y)=><1y1+><zyz+5><3(yf+y§) and Z(y) = (=y1,—y2, 1).
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Condition (15) for k = 3 amounts thus to the non-collinearity of y1, y@® y3 ¢ R2. Let y range in 2 =[|y1],|y2] <
0(1)] ¢ R2. Fix large parameters 1« K; <« K and let {Q/} (resp. {Qp}) be partitions of £2 in % (resp. %) boxes. Denoting
&p the center of Qg, write

(THHx)= f eillf(xa}’)f(y) dy = Z[ / ei[llf(xd’)*l/f(xfﬂ)]f(y) dy]eiw(xyfﬂ) — Z(Tﬂf)(x)eivl(xfﬁ). (17)
o B Qs B

Fix a ball B(a, K) C Bgr C R3. Roughly speaking, we may view Tg(x) as essentially a constant cg on B(a, K) and denote
¢+ = max|cg|. We distinguish two alternatives.

(i) There are (non-collinear) boxes Qg,, Qg,, Qg, such that

[y =y@)A (D =) > K1_2 for y¥ € Qg (1<i<3) (18)
and

lcg,| > K¢, fori=1,2,3. (19)

(ii) The negation of (i), implying that there is a line segment ¢ C £2 such that

lcgl < K2c, if dist(Qp, £) > 10K .

Assume (i). From (17), (19), ITf ®)| S K2c. SKA(|Tg, f1.1Tg, f1.1Tg; F1)1/3(x). The contribution to LP(Bg) is bounded by

1
4 1/3||P P
Kk { > | T T fTp Y ”LIJ(BR)} < C(K)R? (20)
B1.B2.$3(18)
for p > 3, by the [1] 3-linear L3-bound, cf. (16). o
If (ii), proceed as follows. Considering the partition {Q/,} of £, write similarly to (17), Tf(x) =Y, (T}, f)(x)e'¥ ®5a)_ Fix
x € B(a, K). Either

|Tf (0| < 10° max| T f (0] (21)
or there are o1, oy satisfying
. , , 10
dist(Qg, . Qp,) > ra (22)
and
1
(T WL (e N0 2 7 [TF 00 (23)
1

Using parabolic rescaling, the contribution of (21) is estimated by

1/p
p 2/p r—2+4/p A (P) —2+6/p ~ (p)
<Z I, f||Lp(BR)) SKYPK; Qrrx, <K; QP (24)
o
Next, assume (22), (23). Note that on B(a, K) by (ii)

mowls| X e

QpCQy
dist(Qp,0)<10K !

Hence, by (23), either

+m§x\Tﬂf(x)\.

ITfeo| S K3 max |Tsf () (25)

or

[N

ITfx)|<K? max
a1,02(22)

1

2

> | ¥ @9
Qs QpCQq,

dist(Qp,0)<10K ! dist(Qp,0)<10K !
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The LP(Bg) contribution of (25) is bounded by, cf. (24)
6
K3k»2QP. (27)

Using a bilinear L*-bound, estimate
1

1_1 3 2
126 L) < K5 P10 iy < CHk0KF (X sl
dist(Qg,£)<10K~1

<c(KDKItH (Z‘ |Tﬂf(x)|p>E
5

and integrating on Bg, we obtain
1
11 p 5_3
C(KDK2™? (Z IITﬁf||fp<BR>> <CKDK?P 2 Q. (28)
B

In view of (24), (27), (28) and (20), a suitable choice of K1 <« K shows that indeed ngp) <« R? for p > 13—0.
Remark. Theorems 1, 3, 4 and 5 are obtained by generalizing and refining the above technique. The proof of Theorem 2
relies moreover on T. Wolff's estimate for the Kakeya maximal function [5].

4. Curved Kakeya sets

A Kakeya set in R" is a compact set A C R" containing a unit line segment in every direction. Recall that E. Stein’s con-
jecture in Section 1 implies that such sets have maximal Minkowski dimension (i.e. =n). Presently, the ‘Kakeya conjecture’
remains open for n > 3.

Similarly, the mapping properties of T, in Section 2 are closely related to the structure of the associated ‘curved Kakeya
sets’, which are compact sets A C R" containing a curve Iy = [Vyy = b(y)] for each y € 2. Here b: £ — By CR" is
arbitrary. For n odd, the dimension of such sets may be as small as % Taking n = 3, the 2D-compression phenomenon
may occur in either the hyperbolic or elliptic setting, as illustrated for instance by the following phase functions

Y1(X, ) = —X1y1 — X2Y2 + 2x3y1Y2 + X33, (29)
1 1 1
Ya(X, y) = —X1Y1 — X2)2 +X3(§y% + Eyi) +x3y1y2 + 5X§y§- (30)

Let us point out that despite this similarity, ¥ violates inequality (13) whenever p < 4 (see [2]), while for v, by
Theorem 4, (13) holds for p > % (and fails for p < ]3—0).

In even dimension, there is the following result, providing a sharp version of a phenomenon first observed in [2], and
which in some sense is the companion to Theorem 3.

Theorem 6. For n even and y as in (10), any curved Kakeya set has Minkowski dimension at least % +1.
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