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Let (Zn) be a supercritical branching process in a random environment ξ , and W be
the limit of the normalized population size Zn/E[Zn|ξ ]. We show large and moderate
deviation principles for the sequence log Zn (with appropriate normalization) by finding an
equivalence of the moments of Zn and a criterion for the existence of harmonic moments
of W .
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r é s u m é

Soient (Zn) un processus de branchement sur-critique dans un environnement aléatoire ξ ,
et W la limite de la population normalisée Zn/E[Zn|ξ ]. Nous montrons les principes de
grande déviation et de déviation modérée pour la suite log Zn en trouvant un équivalent
des moments de Zn et un critère pour l’existence des moments harmoniques de W .

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and results

Let ξ = (ξ0, ξ1, ξ2, . . .) be a sequence of independent and identically distributed (i.i.d.) random variables taking values in
some space Θ , whose realization determines a sequence of probability generating functions

fn(s) = fξn(s) =
∞∑

i=0

pi(ξn)si, s ∈ [0,1], pi(ξn) � 0,

∞∑
i=0

pi(ξn) = 1.

A branching process (Zn)n�0 in the random environment ξ can be defined as follows:

Z0 = 1, Zn+1 =
Zn∑

i=1

Xn,i (n � 0),

where given the environment ξ , Xn,i (i = 1,2, . . .) are independent of each other and independent of Zn , and have the same
distribution determined by fn .
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Let (Γ,Pξ ) be the probability space under which the process is defined when the environment ξ is given. As usual, Pξ

is called quenched law. The total probability space can be formulated as the product space (Γ × ΘN,P), where P = Pξ ⊗ τ ,
and τ is the law of the environment ξ . The total probability P is usually called annealed law. The quenched law Pξ can be
considered to be the conditional probability of the annealed law P given ξ . The expectation with respect to Pξ (resp. P)
will be denoted by Eξ (resp. E).

For n � 0, define

mn = m(ξn) =
∞∑

i=0

ipi(ξn), Π0 = 1 and Πn = m0 · · ·mn−1 if n � 1.

It is well known that the normalized population size Wn = Zn/Πn is a nonnegative martingale under Pξ (for each ξ ) with
respect to the filtration Fn = σ(ξ, Xk,i,0 � k � n − 1, i = 1,2, . . .), so that the limit W = lim Wn exists almost sure (a.s.)
with EW � 1.

We consider the supercritical case where E logm0 ∈ (0,∞) and E
Z1
m0

log+ Z1 < ∞. For simplicity, we write pi := pi(ξ0)

and assume that p0 = 0 a.s., so that W > 0 and Zn → ∞ a.s.
It is known that log Zn

n → E log m0 a.s. (cf. e.g. [7]). We are interested in the convergence rate of the corresponding
deviation probabilities. We shall show that log Zn and log Πn satisfy the same large and moderate deviation principles
under suitable conditions.

We first consider large deviations. Let Λ(t) = log Emt
0 < ∞ for all t ∈ R and Λ∗(x) = supt∈R{xt − Λ(t)} be the Fenchel–

Legendre transform of Λ. We introduce the following assumption:

(H) There exist constants δ > 0 and A > A1 > 1 such that a.s. A1 � m0 , m0(1 + δ) � A1+δ ,
where m0 = ∑∞

i=0 ipi(ξ0) and m0(1 + δ) = ∑∞
i=0 i1+δ pi(ξ0).

Notice that m0 = Eξ Z1, m0(1 + δ) = Eξ Z 1+δ
1 and that the above condition implies that m0 � A a.s.

The theorem below shows that log Zn and log Πn satisfy the same large deviation principle:

Theorem 1.1 (Large deviation principle). Assume (H). If EZ s
1 < ∞ for all s > 1 and p1 = 0 a.s., then for any measurable subset B of R,

− inf
x∈Bo

Λ∗(x) � lim inf
n→∞

1

n
log P

(
log Zn

n
∈ B

)
� lim sup

n→∞
1

n
log P

(
log Zn

n
∈ B

)
� − inf

x∈B̄
Λ∗(x),

where Bo denotes the interior of B, and B̄ its closure.

Corollary 1.2. Assume (H). If EZ s
1 < ∞ for all s > 1 and p1 = 0 a.s., then

lim
n→∞

1

n
log P

(
log Zn

n
� x

)
= −Λ∗(x) for x < E logm0,

lim
n→∞

1

n
log P

(
log Zn

n
� x

)
= −Λ∗(x) for x > E logm0.

This result was proved by Bansaye and Berestycki (2009, [1]) when (H) holds with δ = 1. As shown in [1], if P(p1 > 0) >

0, the rate function for the large deviation is no longer Λ∗ .
Notice that the Laplace transform of log Zn is Eet log Zn = EZt

n . Therefore, Theorem 1.1 is a consequence of the Gärtner–
Ellis theorem (see [2, p. 52, Exercise 2.3.20]) and Theorem 1.3 below:

Theorem 1.3 (Moments of Zn). Let t ∈ R. Suppose that one of the following conditions is satisfied:

(i) t ∈ (0,1] and Emt−1
0 Z1 log+ Z1 < ∞;

(ii) t > 1 and EZt
1 < ∞;

(iii) t < 0, Ep1 < Emt
0 , ‖p1‖∞ := esssup p1 < 1 and (H) holds.

Then as n → ∞, EZt
n/(Emt

0)
n → C(t) for some constant C(t) ∈ (0,∞).

For t < 0, Theorem 1.3 is an extension of a result of Ney and Vidyashankar [6] on the Galton–Watson process.
A key step in the proof of Theorem 1.3 is the study of the moments of W . For the moments of positive orders, Guivarc’h

and Liu [3] showed that for p > 1, EW p ∈ (0,∞) if and only if E(Z1/m0)
p < ∞ & Em1−p

0 < 1. For the moments of negative
orders, we have the following criterion:
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Theorem 1.4 (Harmonic moments of W ). Assume (H). Then there exists a constant a > 0 such that EW −a < ∞. If additionally
‖p1‖∞ < 1, then for a > 0, EW −a < ∞ if and only if Ep1ma

0 < 1.

Theorem 1.4 reveals that under certain conditions, the number a0 > 0 satisfying Ep1ma0
0 = 1 is the critical value for the

existence of the annealed harmonic moments EW −a(a > 0). Hambly [4] proved that under an assumption similar to (H),
the number α0 := − E log p1

E logm0
is the critical value for the a.s. existence of the quenched moments Eξ W −a(a > 0). By Jensen’s

inequality, we see that a0 � α0.
We then show that log Zn and log Πn also satisfy the same moderate deviation principle.

Theorem 1.5 (Moderate deviation principle). Assume (H) and let σ 2 = var(log m0) ∈ (0,∞). Let (an) be a sequence of positive
numbers satisfying an

n → 0 and an√
n

→ ∞. Then for any measurable subset B of R,

− inf
x∈Bo

x2

2σ 2
� lim inf

n→∞
n

a2
n

log P

(
log Zn − nE log m0

an
∈ B

)

� lim sup
n→∞

n

a2
n

log P

(
log Zn − nE log m0

an
∈ B

)
� − inf

x∈B̄

x2

2σ 2
,

where Bo denotes the interior of B, and B̄ its closure.

2. Sketch of proofs

To prove the results about the harmonic moments of W , we consider the Laplace transform of W . Set φξ (t) = Eξ e−tW

and φ(t) = Eφξ (t) for t > 0. The following lemma gives uniform upper bounds for φξ (t):

Lemma 2.1. Assume (H). Then there exist constants β ∈ (0,1) and K > 0 such that a.s. φξ (t) � β for all t � 1/K . If additionally
‖p1‖∞ < 1, then for some constants a > 0 and C > 0, we have a.s. φξ (t) � Ct−a for all t � 1/K .

Proof. We obtain the upper bound β by an argument similar to [4, Proof of Lemma 3.1]. For the special case where ‖p1‖∞ <

1, notice that φξ (t) satisfies the functional equation

φξ (t) = f0
(
φT ξ (t/m0)

)
, (1)

where T nξ = (ξn, ξn+1, . . .) if ξ = (ξ0, ξ1, . . .) and n � 0. By iteration, we have a.s.

φξ (t) � φT nξ (t/Πn)

n−1∏
j=0

(
p1(ξ j) + (

1 − p1(ξ j)
)
φT nξ (t/Πn)

)
.

Since φT nξ (t/Πn) � β for t � An/K , it follows that a.s. φξ (t) � βαn for t � An/K , where α = ‖p1‖∞ + (1 −‖p1‖∞)β ∈ (0,1).

For t � 1/K , taking n0 = [ log(Kt)
log A ] yields the upper bound Ct−a for suitable a > 0 and C > 0. �

Proof of Theorem 1.4. We first consider the special case where ‖p1‖∞ < 1. For the necessity, notice that W = 1
m0

∑Z1
i=1 W (1)

i ,

where given ξ , (W (1)
i )i�1 are (conditionally) independent, each has the distribution Pξ (W (1)

i ∈ ·) = PT ξ (W ∈ ·). Since
P(Z1 � 2) > 0, we have

EW −a > Ema
0

(
W (1)

1

)−a
1{Z1=1} = Ep1ma

0EW −a.

Thus Ep1ma
0 < 1. For the sufficiency, the upper bound Ct−a in Lemma 2.1 implies that ∀ε > 0, there exists a constant tε > 0

such that a.s. φξ (t) � ε for t � tε . Therefore, by (1), we have φξ (t) � (p1 + (1 − p1)ε)φT ξ (t/m0) for t � Atε . Taking the
expectation gives

φ(t) � E
(

p1 + (1 − p1)ε
)
φ

(
t

m0

)
= pεEφ( Ãεt),

where pε = E(p1 + (1 − p1)ε) < 1 and Ãε is a positive random variable whose distribution is determined by Eg( Ãε) =
1
pε

E(p1 + (1 − p1)ε)g( 1
m0

) for all bounded and measurable function g . Since Ep1ma
0 < 1, we can take a1 > a and ε > 0

small enough such that pεE Ã−a1
ε < 1. Then by Lemma 3.2 of Liu (2001, [5]), φ(t) = O (t−a1 )(t → ∞). Therefore EW −a < ∞

(cf. e.g. [5, Lemma 3.3]).
Now consider the general case without the assumption ‖p1‖∞ < 1. Notice that by Lemma 2.1, a.s. φξ (t) � β for all

t � tβ = 1/K . It suffices to repeat the proof of sufficiency above with β in place of ε. �
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Proof of Theorem 1.3. Denote the distribution of ξ0 by τ0. Fix t ∈ R and define a new distribution τ̃0 as τ̃0(dx) =
m(x)tτ0(dx)/Emt

0, where m(x) = E[Z1|ξ0 = x] = ∑∞
i=0 ipi(x). Consider the new BPRE whose environment distribution is

τ̃ = τ̃⊗N

0 instead of τ = τ⊗N

0 . The corresponding total probability and expectation are denoted by P̃ = Pξ ⊗ τ̃ and Ẽ. Then

EZt
n/(Emt

0)
n = ẼW t

n . We distinguish three cases: t ∈ (0,1), t > 1 and t < 0. For each case, under the given moment condi-

tions, ẼW t
n → ẼW t ∈ (0,∞). �

Proof of Theorem 1.5. Let

Λn(t) = log E exp

(
log Zn − nE log m0

an
t

)
and Γn(t) = log E exp

(
logΠn − nE log m0

an
t

)
.

By the classic moderate deviation principle, n
a2

n
Γn(

a2
n

n t) → 1
2 σ 2t2. Applying Jensen’s inequality and Hölder’s inequality, we

can prove that Λn(
a2

n
n t)/Γn(

a2
n

n t) → 1 for all t 
= 0, so that n
a2

n
Λn(

a2
n

n t) → 1
2 σ 2t2. This together with the Gärtner–Ellis theorem

[2, p. 52, Exercise 2.3.20] implies the desired result. �
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