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In this Note, we present a new numerical method for solving backward stochastic
differential equations. Our method can be viewed as an analogue of the classical finite
element method solving deterministic partial differential equations.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Dans cette Note, nous présentons une nouvelle méthode pour résoudre numériquement les
équations différentielles stochastiques rétrogrades. Notre méthode ressemble à la méthode
des éléments finis qui permet de résoudre numériquement les équations aux dérivées
partielles déterministes.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Linear and nonlinear Backward Stochastic Differential Equations (BSDEs in short) were introduced in [1] and [9], respec-
tively. It is well-known that BSDE plays crucial roles in Stochastic Control, Mathematical Finance etc. Clearly, for applications,
it deserves to develop effective numerical methods for BSDEs.

Let T > 0 and (Ω, F ,F,P) be a complete filtered probability space with F = {Ft}t∈[0,T ] , on which a 1-dimensional
standard Brownian motion {w(t)}t∈[0,T ] is defined. We denote by L2

Ft
(Ω;R

n) (n ∈ N) the Hilbert space consisting of all Ft -

measurable (Rn-valued) square integrable random variables; by L2
F
(Ω; Lr(0, T ;R

n)) (1 � r � ∞) the Banach space consisting
of all R

n-valued {Ft}-adapted processes X(·) such that E|X(·)|2Lr(0,T ;Rn)
< ∞; and by L2

F
(Ω; D([0, T ];R

n)) the Banach space

consisting of all R
n-valued {Ft}-adapted càdlàg processes X(·) such that E(|X(·)|2L∞

F
(0,T ;Rn)

) < ∞. For yT ∈ L2
FT

(Ω;R
n) and

f (·, · ,·) satisfies f (·,0,0) ∈ L2(Ω; L1(0, T ;R
n)) and the usual globally Lipschitz condition, we consider the following BSDE{

dy(t) = f (t, y(t), Y (t))dt + Y (t)dw(t) in [0, T ],
y(T ) = yT .

(1)
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Various numerical methods have been developed to solve Eq. (1), say in [2,7,10,12] and the references therein. These meth-
ods use essentially the strong form of (1), which holds true only if F is the natural filtration generated by the Brownian
motion. Also, it seems that the previous methods need to compute the conditional expectation, which is in general not easy
to be furnished numerically.

In this Note, we shall present a new numerical method solving BSDEs from the viewpoint of transposition solution
introduced in [6], as recalled below.

Definition 1.1. A couple (y(·), Y (·)) ∈ L2
F
(Ω; D([0, T ];R

n)) × L2
F
(Ω; L2(0, T ;R

n)) is called a transposition solution of BSDE
(1), if for any t ∈ [0, T ], (u(·), v(·), η) ∈ L2

F
(Ω; L1(t, T ;R

n)) × L2
F
(Ω; L2(t, T ;R

n)) × L2
Ft

(Ω;R
n), the following variational

equation holds

E
〈
z(T ), yT

〉 − E
〈
η, y(t)

〉 = E

T∫
t

〈
z(τ ), f

(
τ , y(τ ), Y (τ )

)〉
dτ + E

T∫
t

〈
u(τ ), y(τ )

〉
dτ + E

T∫
t

〈
v(τ ), Y (τ )

〉
dτ , (2)

where z(τ ) = η + ∫ τ
t u(s)ds + ∫ τ

t v(s)dw(s).

We refer to [6] for the well-posedness of Eq. (1) in the sense of transposition solution. It is easy to see that, if this equa-
tion admits a strong solution (say under the assumption of natural filtration), it coincides with the transposition solution.

Our numerical schemes for solving Eq. (1) can be described as follows.

1) Take a suitable finite-dimensional subspace Hm of L2
F
(Ω; L2(0, T ;R

n)), where m is a natural number;
2) If the solution of (1) exists, then it should satisfy the variational equation (2) for any u, v ∈ Hm . By taking u and v to

be the orthonormal basis of Hm , we obtain a system of approximating equations;
3) If the solution of the system of approximating equations exists, then we find a class of numerical solutions of (1);
4) Finally, we show the convergence of the above numerical solutions.

Clearly, the above procedure is, in spirit, very close to that of the classical finite element method solving deterministic
PDEs (e.g., [3]). Therefore, our method to solve BSDEs can be viewed as a stochastic version of the finite element-type
method. Nevertheless, the notion of “stochastic finite element method” has already been used for other purpose, say [4,5,8]
and references therein for solving random PDEs. Note also that our method is quite different from that in these references,
and therefore instead we call it a finite transposition method.

There are at least two reasons for us to develop this new numerical approach for BSDE. The first one is that, we can
solve the BSDE with general filtration. The second is that, in our approach, we do not need to compute the conditional
expectation.

We refer to [11] for the details of the proofs of the results in this Note and other results in this context.

2. Numerical schemes and convergence

For simplicity, we consider only the following linear BSDE (with f (·) ∈ L2(Ω; L1(0, T ;R
n))){

dy(t) = f (t)dt + Y (t)dw(t), t ∈ [0, T ),

y(T ) = yT .
(3)

Assume that L2
FT

(Ω;R
n) is a separable Hilbert space. For any N ∈ N, write RN = {t� | t� = �

2N T , � = 0, . . . ,2N }. For any

k ∈ {0, . . . ,2N − 1}, define a sequence of simple processes {eki(·,·)}Mk,N
i=1 by

eki(t,ω) =
{

χ[tk,tk+1)(t)hki(ω), 0 � k < 2N − 1,

χ[tk,T ](t)hki(ω), k = 2N − 1,
(4)

where {M0,N , M1,N , . . . , M2N −1,N} is an increasing sequence of integers. Since L2
Ft

(Ω;R
n) ⊆ L2

Fs
(Ω;R

n) (for any 0 � t < s �
T ), we may assume that {hki} satisfy the following:

1) For any fixed k ∈ {0, . . . ,2N − 1}, {hki}Mk,N
i=0 is an orthogonal set in L2

Ftk
(Ω;R

n), with the norm |hki |L2
Ftk

(Ω;Rn) =
√

2N

T ,

and hence |eki|L2
F
(Ω;L2(0,T ;Rn)) = 1;

2) If 0 � k < l � 2N − 1, then {hki}Mk,N
i=0 ⊂ {hli}Ml,N

i=0 ; and

3) If s0 = k0
2N0

T for some N0 ∈ N and k0 ∈ {0, . . . ,2N0 − 1}, then s0 = 2l−N0 k0T /2l ∈ Rl for any l � N0. For l � N0, write

kl = 2l−N0 k0. Then, {hk j i}
Mk j , j

i=0 ⊂ {hkl i}
Mkl ,l

i=0 for N0 � j < l, and
⋃∞

l=N {hkl i}
Mkl ,l

i=1 is an orthogonal basis of L2
F (Ω;R

n).

0 s0
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Denote by HN the subspace of L2
F
(Ω; L2(0, T ;R

n)) spanned by {e0i}M0,N
i=1 , . . . , {e2N−1,i}

M2N −1,N
i=1 . This is the finite element

subspace that we will employ below. Replace L2
F
(Ω; L2(0, T ;R

n)) by HN , then the desired numerical scheme follows by
trying to find yN , Y N ∈ HN such that (2) (with f (·, y(·, Y (·)) replacing by f (·)) holds for η = 0 and for all u, v ∈ H N .

To find the yN in HN , suppose yN = ∑2N −1
k=0

∑Mk,N
i=0 αkieki . Choosing u = eki , v = 0 and η = 0, we get zki(t) = ∫ t

0 eki(τ )dτ ,

and hence E〈zki(T ), yT 〉 = E
∫ T

0 〈zki(τ ), f (τ )〉dτ + ∑
l, j αl jE

∫ T
0 〈eki(τ ), elj(τ )〉dτ . Since {eki} is an orthonormal basis of HN ,

it follows that E
∫ T

0 〈elj(τ ), eki(τ )〉dτ = δklδi j . Therefore,

αki = T

N
E〈hki, yT 〉 − E

T∫
0

〈
(τ ∧ tk+1 − τ ∧ tk)hki, f (τ )

〉
dτ . (5)

Similarly, suppose Y N = ∑2N −1
k=0

∑Mk,N
i=0 βkieki . By taking u = 0, η = 0 and v = eki to get a corresponding zki(t) =∫ t

0 eki(τ )dwτ , we find that

βki = E
〈(

w(tk+1) − w(tk)
)
hki, yT

〉 − E

T∫
0

〈(
w(τ ∧ tk+1) − w(τ ∧ tk)

)
hki, f (τ )

〉
dτ .

We now show the convergence of the sequence {(yN , Y N )} of numerical solutions constructed above.

Theorem 2.1. Let (y, Y ) be the transposition solution of (3). Then yN and Y N are projections of y (viewing as an element of
L2

F
(Ω; L2(0, T ;R

n))) and Y onto HN , respectively.

By the construction of H N , it is clear that HN ⊂ HM provided N < M . Moreover,
⋃∞

N=1 HN is dense in L2
F
(Ω; L2(0, T ;R

n)).
Hence,

E

T∫
0

∣∣yN(τ ) − y(τ )
∣∣2

dτ + E

T∫
0

∣∣Y N(τ ) − Y (τ )
∣∣2

dτ → 0, as N → ∞. (6)

Furthermore, starting from (6), we can show the following convergent result.

Theorem 2.2. As N → ∞, (yN , Y N ) tends to (y, Y ) in L2
F
(Ω; D([0, T ],R

n)) × L2
F
(Ω; L2(0, T ;R

n)).
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