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We construct a separable Banach space Xwh with an unconditional basis that is a weak
Hilbert space and no block subspace is linearly isomorphic to any of its proper subspaces.
We prove that the space Xwh satisfies these properties by showing it is strongly
asymptotic �2 and that every bounded linear operator on Xwh is a strictly singular
perturbation of a diagonal operator with respect to the unit vector basis.
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r é s u m é

Nous construisons un space de Banach Xwh qui est un espace failble de Hilbert
et n’admettant aucune sous-espace bloc isomorphe linéaire à une sous-espace. Nous
démontrons les propriétés de Xwh par démontrons que Xwh est fortement asymptotique �2
et tout opérateur borné de Xwh soit une variation strictment singulière d’un opérateur
diagonal par rappert à la base.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

A Banach space X is called a weak Hilbert space [10] if there are positive constants δ and C such that every finite
dimensional subspace E of X contains a subspace F such that dim F � δ dim E , the Banach–Mazur distance between F and
�dim F

2 is at most equal to C and there is a projection from X to F with norm at most C . It has been shown by G. Pisier [11]
that the Fredholm theory, as developed by Grothendieck, works in weak Hilbert spaces. W.B. Johnson [8] showed that the
2-convexification of Tsirelson’s space is a weak Hilbert space; thus exhibiting a weak Hilbert space not containing �2. Other
constructions related to the higher order modified Tsirelson spaces could also provide more exotic weak Hilbert spaces.

In this Note we construct an example of a weak Hilbert space Xwh with an unconditional basis that has a quite asym-
metric structure. In particular, every operator on a block subspace Y of Xwh is a strictly singular perturbation of a diagonal
operator on Xwh restricted to Y . This implies that no block subspace is linearly isomorphic to any of its proper subspaces.
In addition, for disjointly supported block subspaces Y and Z of Xwh every operator T : Y → Z is strictly singular. Moreover,
Xwh does not contain a quasi minimal subspace and (using the terminology from [6]) its basis is tight by support. In this
announcement we will outline the argument required to show that every operator on a block subspace has the desired
decomposition.
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2. Description of Xwh

The definition of the space Xwh uses a type of modified mixed Tsirelson saturation method. The space Xwh is defined
as the completion of c00(N) under a norm induced by a norming set of functionals denoted by D wh and described as
follows.

For each n ∈ N let Sn denote the Schreier family of order n. See [1,2] for precise definitions. We note that these families
contain only finite subsets of N and satisfy Sk ⊂ Sn for k < n. A sequence (Ei)

d
i=1 of finite subsets of N is Sn-admissible if

E1 < E2 < · · · < Ed and (min Ei)
d
i=1 ∈ Sn . A sequence (Ei)

d
i=1 of finite sets of N is Sn-allowable if (Ei)

d
i=1 are pairwise disjoint

and (min Ei)
d
i=1 ∈ Sn . A sequence of vectors (xi)

d
i=1 is Sn-allowable (resp. admissible) if (supp xi)

d
i=1 is Sn-allowable (resp.

admissible).
The definition of Xwh requires that we fix two increasing sequences of positive integers (ni)

∞
i=0 and (mi)

∞
i=0 satisfying

certain growth conditions. Let m0 = m1 = 2, n0 = 1 and for j � 2 let m j+1 � m3
j , � j = 3 log2(m j) + 1; n j is chosen such that

� j(n j−1 + 1) < n j . Now fix infinite disjoint subsets N1 and N2 such that N = N1 ∪ N2. Let,

Σ = {
(Ei,2 ji)

n
i=1: Ei ∩ E j = ∅ and j1 < j2 < · · · < jn with j1 ∈ N1 and ji ∈ N2 for i > 1

}
.

Let σ : Σ → N2 be an injection satisfying the following growth condition:

m2σ ((E1,2 j1),...,(Ei+1,2 ji+1)) > m2σ ((E1,2 j1),...,(Ei ,2 ji)) · (maxsupp Ei)
2.

We need the following two definitions:

Definition 1. Let D ⊂ c00(N), m > 1 and n ∈ N. We say that D is closed in the modified �2 − (1/m, Sn) operation if for every
( f i)

d
i=1 ⊂ D such that ( f i)

d
i=1 is Sn-allowable and (λi)

d
i=1 ∈ Ba(�2) the vector

1

m

d∑
i=1

λi f i ∈ D.

Let ω( f ) = m (weight of f ) whenever f is the result of the above operation.

Definition 2 (σ -special sequences).

(1) A sequence (Ei,2 ji)
∞
i=1 is σ -special if j1 ∈ N1 and for each i � 1,

σ
(
(E1,2 j1), . . . , (Ei,2 ji)

) = ji+1.

(2) A σ -special sequence (Ei,2 ji)
p
i=1 is a Sn2 j+1 σ -special sequence if (min Ei)

p
i=1 ∈ Sn2 j+1 and j1 > j + 1.

(3) ( f i)
p
i=1 ⊂ c00(N) is a σ -special sequence of functionals (resp. Sn2 j+1 σ -special sequence of functionals) if there exists a

σ -special sequence (Ei,2 ji)
p
i=1 (resp. Sn2 j+1 σ -special sequence) such that supp f i ⊂ Ei and ω( f i) = m2 ji for each

1 � i � p.

We are now ready to define D wh as follows:

Definition 3. The norming set D wh is the minimal subset of c00(N) such that

(1) {±e∗
n: n ∈ N} ⊂ D wh .

(2) D wh is closed under �2 − (1/m2 j, Sn2 j ) operations for all j ∈ N.
(3) D wh is closed under �2 − (1/m2 j+1, Sn2 j+1) operations for all j ∈ N on Sn2 j+1 σ -special sequences of functionals.

The space Xwh is the completion of c00(N) under the norm induced by D wh . Namely, for x ∈ c00(N) let

‖x‖ = sup
{∣∣ f (x)

∣∣: f ∈ D wh
}
.

Finally, note that the norm satisfies

‖x‖ = max
{

sup
{‖x‖ j: j ∈ N ∪ {0}},‖x‖∞

}
where for each j ∈ N, ‖ · ‖ j satisfies the following implicit formulas:
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‖x‖2 j = sup

{
1

m2 j

(
k∑

i=1

‖Ei x‖2

) 1
2

: (Ei)
k
i=1 is Sn2 j -allowable

}
, (1)

‖x‖2 j+1 = sup

{
1

m2 j+1

(
k∑

i=1

‖Ei x‖2
2 ji

) 1
2

: (Ei,2 ji)
k
i=1 is a Sn2 j+1 σ -special sequence

}
. (2)

From the above, it is easy to see that the unit vector basis of Xwh is unconditional.

3. Properties of Xwh

In order to verify that Xwh is a weak Hilbert space we will use a sufficient condition due to N.J. Nielsen and N. Tomczak-
Jaegermann [9]. By applying results of Johnson, they showed that a space with a basis is weak Hilbert whenever there is a
C > 0 such that every sequence of n vectors that is disjointly supported after n is C-equivalent to the unit vector basis of
�n

2. This property has been called strongly asymptotic �2 and has been studied by several authors in more general settings
[5,6,12]. The next proposition shows that Xwh has this property.

Proposition 4. The basis (ei)i∈N of Xwh is strongly asymptotic �2 . In particular, for every sequence of disjointly supported vectors
(xk)

d
k=1 such that d � supp xi for i ∈ {1, . . . ,d},

1

m2

(
d∑

k=1

‖xk‖2

) 1
2

�
∥∥∥∥∥

d∑
k=1

xk

∥∥∥∥∥ �
(

d∑
k=1

‖xk‖2

) 1
2

.

The lower inequality follows from Eq. (1) for j = 1. The proof of the upper inequality relies on induction on the height
of the tree analysis of a functional. This notion is central in constructions related to saturation methods (see, for example,
[3]) and it essentially describes the “history” of the functional, namely how it is built through the application of the �2-
operations. The key point in this proof is that the coding function is chosen with respect to the sets ‘Ei ’ and not the specific
functionals ‘ f i .’

As in all constructions of this type, there are several technical obstacles to overcome in order to verify that the space of
operators on Xwh has the desired properties. In the present case, however, the need to evaluate norms with �2 structure
and the fact that the norming functionals are built from others with disjoint and not successive supports requires new
techniques for calculating norms. The methods developed for evaluating norms in this modified mixed Tsirelson setting may
be of independent interest. It is also worth mentioning that in this context the standard and powerful tool for reducing the
complexity of calculations (i.e. the basic inequality) is not, and perhaps cannot, be used.

We will state the main proposition required to verify that the operators on block subspaces have the desired decompo-
sition. To do so we recall a few more definitions.

The crucial notion needed is that of a rapidly increasing sequence (RIS) of vectors. In our case, the vectors that form a RIS
are seminormalized �2-(ε,n) averages for ε > 0 and n ∈ N. These averages have been defined previously in the papers [2,4].
Each RIS (xn)n is associated with a constant C and an increasing sequence ( jk), where jk+1 is chosen inductively with
respect to the support of xk . It is routine to show that every block subspace contains a RIS. Another element we need is the
notion of a diagonal free operator which is given in the following:

Definition 5. Let X be a Banach space with a Schauder basis (en)n and T : X → X be a bounded linear operator. T is called
diagonal free if e∗

n(T en) = 0, for all n ∈ N.

The final step in our work is to show that every diagonal free operator T ∈ L(Y ), where Y is a block subspace of Xwh is
strictly singular. This actually follows from the fact that for every RIS (xn)n in Y , limn T xn = 0.

In order to show that the diagonal free operators converge in norm to 0 on RIS’s, we use the following.
Given a (C, (is))-RIS (yn) one can inductively build a further block sequence (xn) that satisfies the following:

(a) For j ∈ N with j + 1 < j1 ∈ N1 there is a sequence (Ei)
∞
i=1 such that (Ei,2 ji)

∞
i=1 is σ -special with (

⋃
i∈N

Ei) ∩
(
⋃

i∈N
supp xi) = ∅.

(b) The sequence (xk) is seminormalized and for each k ∈ N, xk is a �2-(1/m3
2 jk

,n2 jk ) average.

Such a sequence (xk) is called a (0, C,2 j + 1) dependent sequence with respect to (Ei,2 ji)
∞
i=1.

The critical and most technically demanding inequality that is used for proving the decomposition property of operators
on block subspaces and its asymmetrical structure is the following:

Proposition 6. Let j ∈ N, C > 0, and (xk)
d
k=1 be a (0, C,2 j + 1) dependent sequence and let

∑d
k=1 bkxk be a (1/m2

2 j+2,n2 j+1)

average. Then,
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∥∥∥∥∥
d∑

k=1

bkxk

∥∥∥∥∥ � C

m2
2 j+1

.

Granting the above, one can show that a diagonal free operator goes to zero along an RIS. The proof essentially reduces
(using a technical counting argument from [7]) to showing that for every RIS (xn)n and every partition Cn, Bn of supp xn ,
limn Cn T Bnxn = 0. This argument relies heavily on Proposition 6; we give an outline of the proof below.

Proposition 7. Let Y be a block subspace of Xwh generated by (yn)n and T : Y → Y be a diagonal free operator with respect to (yn)n.
Let also (xn)n be a RIS in Y , then T xn → 0.

Proof. Suppose, toward a contradiction, that the conclusion fails. Then, from the preceding discussion by passing to a
subsequence if necessary, there exists ε > 0 such that ‖Cn T Bnxn‖ > ε for every n ∈ N. It is easy to see that (Bnxn) is a
(C, (2in))-RIS. For each n ∈ N let fn ∈ D wh such that fn(Cn T Bnxn) > ε and supp fn ⊂ Cn . Choose j ∈ N such that 1

m2 j+1
<

ε
‖T ‖C . Next we construct sequences (zk)

∞
k=1, (gk)

∞
k=1 and (Ei,2 ji)

∞
i=1 such that,

(1) (zk)
∞
k=1 is a block subsequence of (xn).

(2) (zk)
∞
k=1 is a (0, C,2 j + 1) dependent sequence with respect to (Ei,2 ji)

∞
i=1.

(3) (gk)
∞
k=1 ⊂ D wh is σ -special with respect to (Ei,2 ji)

∞
i=1.

(4) gk(T zk) � ε for all k ∈ N.

Given this, we arrive at a contraction in the following way: Find d ∈ N such that (min Ei)
d
i=1 is a maximal element of

Sn2 j+1 . There is a sequence (bk)
d
k=1 ∈ Ba(�2) such that

∑d
k=1 bk zk is a (1/m2

2 j+2,n2 j+1) average. Using the conditions on the
sequences and Proposition 6, the contradiction to our choice of j is as follows,

ε

m2 j+1
<

1

m2 j+1

d∑
k=1

bk gk

(
d∑

k=1

bk T zk

)
�

∥∥∥∥∥T

(
d∑

k=1

bkzk

)∥∥∥∥∥ � C‖T ‖
m2

2 j+1

. �

The above proposition yields that every diagonal free operator is strictly singular. This fact combined with the uncondi-
tionality of the basis of Xwh yield the following main result of the Note:

Theorem 8. Let Y be a block subspace of Xwh generated by (yn)n and T : Y → Y be a bounded linear operator. Then T can be written
as T = D + S, where D is a diagonal operator with respect to the basis (yn)n of Y and S is a strictly singular operator. Moreover, every
block subspace of Xwh cannot be isomorphic to any of its proper subspaces.

It is easy to see that every bounded linear operator T : Y → Y is the sum of a diagonal operator D and a diagonal free
operator S and from Proposition 7 we conclude that S is strictly singular. The last part of Theorem 8 follows from the
decomposition of T and Fredholm theory [7].
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