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In this Note, our aim is to obtain the central limit theorem for capacities induced by
sublinear expectations.
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r é s u m é

Le but de cette Note est d’établir un théorème central limite pour les capacités associées à
une espérance sous-linéaire.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Central limit theorem (CLT) is long and widely been known as a fundamental result in probability theory. It is very useful
in many fields.

Recently motivated by model uncertainties in statistics, finance and economics, Peng [2–7] initiated the notion of IID
random variables and the definition of G-normal distribution under sublinear expectations. He further obtained new central
limit theorems (CLT) under sublinear expectations. A natural question is the following: Can the classical CLT be generalized
for capacities? In this Note, adapting Peng’s IID notion and applying Peng’s CLT under sublinear expectations, we investigate
CLT for capacities.

This Note is organized as follows: in Section 2, we give some notions and lemmas that are useful in this Note. In
Section 3, we give the main result including the proof.

2. Preliminaries

We present some preliminaries in the theory of sublinear expectations. More details of this section can be found in
Peng [2–7].

Definition 2.1. Let Ω be a given set and let H be a linear space of real valued functions defined on Ω . We assume that all
constants are in H and that X ∈ H implies |X | ∈ H. H is considered as the space of our “random variables”. A nonlinear
expectation Ê on H is a functional Ê : H �→ R satisfying the following properties: for all X , Y ∈ H, we have

(a) Monotonicity: If X � Y then Ê[X] � Ê[Y ].
(b) Constant preserving: Ê[c] = c.
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The triple (Ω, H, Ê) is called a nonlinear expectation space (compare with a probability space (Ω, F , P )). We are mainly
concerned with sublinear expectation where the expectation Ê satisfies also

(c) Sub-additivity: Ê[X] − Ê[Y ] � Ê[X − Y ].
(d) Positive homogeneity: Ê[λX] = λÊ[X], ∀λ � 0.

If only (c) and (d) are satisfied, Ê is called a sublinear functional.

The following representation theorem for sublinear expectations is very useful (see Peng [6,7] for the proof):

Lemma 2.1. Let Ê be a sublinear functional defined on (Ω, H), i.e., (c) and (d) hold for Ê . Then there exists a family {Eθ : θ ∈ Θ} of
linear functionals on (Ω, H) such that

Ê[X] = max
θ∈Θ

Eθ [X]. (1)

If (a) and (b) also hold, then Eθ are linear expectations for θ ∈ Θ . If we make furthermore the following assumption: (H) For each
sequence {Xn}∞n=1 ⊂ H such that Xn(ω) ↓ 0 for ω, we have Ê[Xn] ↓ 0. Then for each θ ∈ Θ , there exists a unique (σ -additive)
probability measure Pθ defined on (Ω,σ (H)) such that

Eθ [X] =
∫
Ω

X(ω)dPθ (ω), X ∈ H. (2)

In this Note, we are interested in the following sublinear expectation:

E[·] = sup
Q ∈P

E Q [·],

where P is a set of probability measures. Let Ω be a given set and let F be a σ -algebra. Define V (A) := E[I A] =
supQ ∈P E Q [I A], v̄(A) := −E[−I A] = infQ ∈P E Q [I A], ∀A ∈ F , then V and v̄ are two capacities.

Let Cl,Lip(Rn) denote the space of functions ϕ satisfying∣∣ϕ(x) − ϕ(y)
∣∣ � C

(
1 + |x|m + |y|m)|x − y| ∀x, y ∈ Rn,

for some C > 0, m ∈ N depending on ϕ and let Cb,Lip(Rn) denote the space of bounded functions ϕ satisfying∣∣ϕ(x) − ϕ(y)
∣∣ � C |x − y| ∀x, y ∈ Rn,

for some C > 0 depending on ϕ .
The following is the notion of IID random variables under sublinear expectations introduced by Peng [2–7]:

Definition 2.2. Independence: Suppose that Y1, Y2, . . . , Yn is a sequence of random variables such that Yi ∈ H. Random
variable Yn is said to be independent of X := (Y1, . . . , Yn−1) under E , if for each function ϕ ∈ Cl,Lip(Rn), we have

E
[
ϕ(X, Yn)

] = E
[

E
[
ϕ(x, Yn)

]
x=X

]
.

Identical distribution: Random variables X and Y are said to be identically distributed, denoted by X ∼ Y , if for each function
ϕ ∈ Cl,Lip(R), we have

E
[
ϕ(X)

] = E
[
ϕ(Y )

]
.

IID random variables: A sequence of random variables {Xn}∞n=1 is said to be IID, if Xn ∼ X1 and Xn+1 is independent of
Y := (X1, . . . , Xn) for each n � 1.

Definition 2.3 (G-normal distribution, see Definition 10 in Peng [3]). A random variable ξ ∈ H under sublinear expectation Ẽ
with σ̄ 2 = Ẽ[ξ2], σ 2 = −Ẽ[−ξ2] is called G-normal distribution, denoted by N (0; [σ 2, σ̄ 2]), if for any function ϕ ∈ Cl,Lip(R),
write u(t, x) := Ẽ[ϕ(x + √

tξ)], (t, x) ∈ [0,∞) × R , then u is the unique viscosity solution of PDE:

∂t u − G
(
∂2

xxu
) = 0, u(0, x) = ϕ(x),

where G(x) := 1
2 (σ̄ 2x+ − σ 2x−) and x+ := max{x,0}, x− := (−x)+ .

The following lemma is very useful in this Note:
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Lemma 2.2. Suppose that ξ is G-normal distributed by N (0; [σ 2, σ̄ 2]). Let P be a probability measure and ϕ be a bounded continuous
function with compact support. If {Bt}t�0 is a P -Brownian motion, then

Ẽ
[
ϕ(ξ)

] = sup
θ∈Θ

E P

[
ϕ

( 1∫
0

θs dBs

)]
,

where

Θ := {{θt}t�0: θt is Ft -adapted process such that σ � θt � σ̄
}
,

Ft := σ {Bs,0 � s � t} ∨ N , N is the collection of P -null subsets.

Proof. By Proposition 54 in Denis, Hu and Peng [1], we have: for each ϕ ∈ Cb,Lip(R),

Ẽ
[
ϕ(ξ)

] = sup
θ∈Θ

E P

[
ϕ

( 1∫
0

θs dBs

)]
. (3)

If ϕ is a bounded continuous function with compact support, for each ε > 0, we can find a ϕ̄ ∈ Cb,Lip(R) such that
supx∈R |ϕ(x) − ϕ̄(x)| � ε

2 . Hence, we have

∣∣∣∣∣̃E
[
ϕ(ξ)

] − sup
θ∈Θ

E P

[
ϕ

( 1∫
0

θs dBs

)]∣∣∣∣∣ �
∣∣̃E

[
ϕ(ξ)

] − Ẽ
[
ϕ̄(ξ)

]∣∣ +
∣∣∣∣∣̃E

[
ϕ̄(ξ)

] − sup
θ∈Θ

E P

[
ϕ̄

( 1∫
0

θs dBs

)]∣∣∣∣∣
+

∣∣∣∣∣sup
θ∈Θ

E P

[
ϕ

( 1∫
0

θs dBs

)]
− sup

θ∈Θ

E P

[
ϕ̄

( 1∫
0

θs dBs

)]∣∣∣∣∣ � ε.

Since ε can be arbitrarily small, Ẽ[ϕ(ξ)] = supθ∈Θ E P [ϕ(
∫ 1

0 θs dBs)]. �
With the notion of IID under sublinear expectations, Peng shows central limit theorem under sublinear expectations (see

Theorem 5.1 in Peng [6]).

Lemma 2.3 (Central limit theorem under sublinear expectations). Let {Xi}∞i=1 be a sequence of IID random variables. We further assume

that E[X1] = E[−X1] = 0. Then the sequence {Sn}∞n=1 defined by Sn := 1√
n

∑n
i=1 Xi converges in law to ξ , i.e.,

lim
n→∞ E

[
ϕ(Sn)

] = Ẽ
[
ϕ(ξ)

]
,

for any continuous function ϕ satisfying linear growth condition, where ξ is a G-normal distribution.

3. Main result

Now we give our main result:

Theorem 3.1 (Central limit theorem for capacities). Let {Xi}∞i=1 be a sequence of IID random variables. We further assume that E[X1] =
E[−X1] = 0. Denote Sn := 1√

n

∑n
i=1 Xi . Then

(1) if y is a point at which Ṽ is continuous, we have

lim
n→∞ V (Sn � y) = Ṽ (y),

(2) if y is a point at which ṽ is continuous, we have

lim
n→∞ v̄(Sn � y) = ṽ(y),

where Ṽ (y) = supθ∈Θ E P [I ∫ 1 ] and ṽ(y) = infθ∈Θ E P [I ∫ 1 ].
{ 0 θs dBs�y} { 0 θs dBs�y}
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Proof. Suppose that y is a point at which Ṽ is continuous. Let ε be any positive number, and take δ small enough that
Ṽ (y + δ) − Ṽ (y − δ) � ε. Construct two bounded continuous functions f , g such that

f (x) = 1 for x � y − δ, f (x) = 0 for x � y, 0 < f (x) � 1 for y − δ < x < y;
g(x) = 1 for x � y, g(x) = 0 for x � y + δ, 0 < g(x) � 1 for y < x < y + δ.

Then

Ṽ (y − δ) � sup
θ∈Θ

E P

[
f

( 1∫
0

θs dBs

)]
� Ṽ (y) � sup

θ∈Θ

E P

[
g

( 1∫
0

θs dBs

)]
� Ṽ (y + δ), (4)

and for each n,

E
[

f (Sn)
]
� V (Sn � y) � E

[
g(Sn)

]
. (5)

Obviously, f and g have compact supports. By Lemmas 2.2 and 2.3, we have

lim
n→∞ E

[
f (Sn)

] = sup
θ∈Θ

E P

[
f

( 1∫
0

θs dBs

)]
,

lim
n→∞ E

[
g(Sn)

] = sup
θ∈Θ

E P

[
g

( 1∫
0

θs dBs

)]
.

So that

sup
θ∈Θ

E P

[
f

( 1∫
0

θs dBs

)]
� lim inf

n→∞ V (Sn � y) � lim sup
n→∞

V (Sn � y) � sup
θ∈Θ

E P

[
g

( 1∫
0

θs dBs

)]
. (6)

Hence

Ṽ (y) − ε � lim inf
n→∞ V (Sn � y) � lim sup

n→∞
V (Sn � y) � Ṽ (y) + ε. (7)

Since this is true for every ε, limn→∞ V (Sn � y) = Ṽ (y). �
In a similar manner as in the above, we can obtain limn→∞ v̄(Sn � y) = ṽ(y).

Remark 3.1. (1) Obviously, Ṽ is an increasing function, then Ṽ is continuous in R except in, at most, countable points.
Similarly, ṽ is continuous in R except in, at most, countable points.

(2) In Theorem 3.1, if E[X2
1] = −E[−X2

1] = σ 2 > 0, then for each y ∈ R ,

lim
n→∞ V (Sn � y) = lim

n→∞ v̄(Sn � y) =
y∫

−∞

1√
2πσ

e
− x2

2σ2 dx.
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