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In this Note we show that an Artin stack with finite inertia stack is étale locally
isormorphic to the quotient of an affine scheme by an action of a general linear group.
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r é s u m é

Dans cette Note, nous montrons que tout champ algébrique dont l’inertie est finie, est
étale-localement isomorphe au quotient d’un schéma affine par une action du groupe
général linéaire.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Let X be an Artin stack over Z (see [9]). A coarse moduli map (space) for X is a morphism π : X → X to an algebraic
space X which has properties:

• π is universal among morphisms from X to algebraic spaces, i.e., for any morphism φ : X → Y with an algebraic space
Y there is a unique morphism f : X → Y such that φ = f ◦ π ,

• for any algebraically closed field K , π identifies the set of isomorphism classes of X (K ) with the set X(K ) of K -valued
points of X .

Let X be an Artin stack locally of finite type over a locally noetherian scheme S . Suppose that X has finite inertia stack,
that is, the projection

pr1 : I X := X ×X ×S X X → X

is finite. In this setting, according to [7] there exist an algebraic space X locally of finite type over S and a coarse moduli
map π : X → X over S , where π is proper and quasi-finite. When in addition X is a Deligne–Mumford stack, it has, étale
locally on its coarse moduli space X , the form of a quotient stack [Z/G] where Z is an affine scheme and G is a finite
group. This structure has been important and very useful in various situations. We would like to make the following useful
observation:

Theorem 1. Let X be an Artin stack locally of finite type over S with finite inertia stack. Then for any point x ∈ X there is an étale
neighborhood U → X of π(x) such that the S-stack X ×X U has the form [Spec R/GLn], where Spec R is an affine scheme over S and
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GLn is the general linear group scheme defined over S. Moreover, U is naturally isomorphic to the spectrum Spec RGLn of the invariant
ring.

Proof. Let π(x) = y. Then according to the proof of the theorem of Keel and Mori (see [7] in particular Section 4, see
also [3]), we see that there is an étale neighborhood U → X of y from an affine scheme U such that XU := X ×X U has
a finite flat surjective morphism p : Y → XU from a scheme Y . Then since Y is a scheme, p∗OY is a vector bundle on XU

such that at each geometric point the stabilizer faithfully acts on the fiber. After shrinking XU if necessary we assume that
XU is connected. Then by [4, 2.12] the total space of the corresponding principal GLn-bundle W over XU is an algebraic
space and thus XU is isomorphic to the quotient stack [W /GLn] where n is a non-negative integer. Now we will show that
W is an affine scheme. Note that the projection W → [W /GLn] is a GLn-bundle and XU � [W /GLn] → U is proper. Hence
W is separated and noetherian. In addition, Y → XU → U is a finite morphism and thus Y is affine. Therefore W ×XU Y
is affine because the second projection W ×XU Y → Y is affine. Notice that the first projection W ×XU Y → W is a finite
surjective morphism. Consequently, applying Chevalley’s theorem for algebraic spaces (see [8, III 4.1]) we deduce that W is
affine. The last claim follows from the fact that XU → U is a coarse moduli map because U → X is étale. �
Remark 2. The action of GLn on Spec R in Theorem 1 has a linearization. According to [14, Theorem 3.6, Corollary 3.7] there
is a GLn-equivariant closed immersion Spec R → Am

U , where Am
U is an affine m-space over U which is endowed with a linear

action of GLn .

Remark 3. If X is a Deligne–Mumford stack of finite type over S which has finite inertia stack, then étale locally on its
coarse moduli space, X is the quotient [Y /G] of an affine scheme Y by an action of a finite (constant) group G (see
[1, 2.2.3]). If stabilizer group schemes at geometric points on X are finite (not necessarily reduced) linearly reductive group
schemes, in [2] it is shown that X is, étale locally on its coarse moduli space, the quotient of an affine scheme by an action
of a linearly reductive group scheme. In [5] such étale-local quotient structures was studied when X has (not necessarily
finite) linearly reductive stabilizers and satisfies the stability (see [5]). In these cases the stabilizer group schemes has no
non-trivial deformation (i.e., has a unique deformation), and we may take G to be the stabilizer group scheme at a point on
X when we work over a field. This point is crucial for Luna’s étale slice theorem. However, in positive characteristic case
a general (finite) group scheme has many and rich deformations. Thus in general local structures of Artin stacks are not so
simple as above cases. Indeed an Artin stack can contain the information arising from non-trivial flat deformations of G , i.e.,
BG.

The typical usage of Theorem 1 is the reduction of problems to the case of group actions. In the rest of this note, we
will present one of such applications of Theorem 1, which is a direct one. For this we shall prepare our setup.

Let X be an Artin stack of finite type over Z. We will denote by G(X ) (resp. K (X )) the algebraic K -theory spectrum
of the exact category of coherent sheaves (resp. vector bundles) on X , and we let G(X ) ⊗ Q and K (X ) ⊗ Q Bousfield
localizations of G(X ) and K (X ) respectively, with respect to Q (see [6]). Let us recall the isovariant étale descent of
G-theory due to Joshua [6], which generalizes Thomason’s descent [12]. Joshua generalized the notion of isovariant étale
morphisms [15] in the equivariant case to arbitrary stacks and proved the descent theorem. We can state our result without
using terms of isovariant étale morphisms, but we recall the notion for the reader’s convenience. A morphism Y → X
of Artin stacks is isovariant if I Y → I X ×X Y is an isomorphism, where I X and I Y denote inertia stacks of X and Y
respectively. Note that an isovariant morphism is representable. If X → Z is a morphism to an algebraic space Z and
W → Z is a morphism of algebraic spaces, then the projection X ×Z W → X is isovariant. Conversely, if X has finite inertia
stack and π : X → X is a coarse moduli map, then for any isovariant étale morphism Y → X there exists an étale morphism
Z → X such that π−1(Z) → X is naturally isomorphic to Y → X (cf. [15, 2.17]). Indeed if we denote by Y a coarse moduli
space for Y and by Y → X the induced morphism, then by [3, 4.2] Y → X is étale (it suffices to check this locally on X ).
Thus it suffices to see that the natural étale morphism Y → π−1(Y ) is an isomorphism. Note that Y → π−1(Y ) is separated.
To check this we may assume that Y is affine and π−1(Y ) has a finite flat cover W → π−1(Y ) by an affine scheme W .
Recall that Y → Y and π−1(Y ) → Y are proper and quasi-finite. Then the natural morphism W ×π−1(Y ) Y → Y → Y is
finite, and we conclude that W ×π−1(Y ) Y is affine and Y → π−1(Y ) is affine. Now using [11, 2.7] and [9, A.2.1] we deduce
that Y → π−1(Y ) is a finite étale morphism of degree one, i.e., an isomorphism.

We continue to assume that X has finite inertia stack and let π : X → X be a coarse moduli map. Then using Quillen’s
Q -construction and the loop functor, we have two presheaves of spectra

G : (Xet)
op → Spt

and

K : (Xet)
op → Spt

which to any Y → X in the étale site Xet associate G(π−1(Y )) and K (π−1(Y )) respectively, where Spt is the category of
spectra. For a presheaf of spectra P let Het(X, P ) be the hypercohomology with respect to étale topology on X , defined
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in [6, Section 4]. In [6], to define hypercohomology of presheaves of spectra the author uses Godement resolutions. If you
are familiar with model categories, you may consider the hypercohomology of P to be P ′(X ) where P → P ′ is a fibrant
replacement in the category of presheaves of spectra endowed with the Jardine’s model structure [10, 3.3] with respect to
étale topology. Building on the idea of isovariant étaleness Joshua’s descent states that there is a natural weak equivalence
G(X )⊗Q → Het(X,G ⊗Q). (See [6, 5.10] for various localized versions.) The following generalizes Poincaré duality [6, 5.16],
which was proved in the case of Deligne–Mumford stacks:

Proposition 4 (Poincaré duality). Let X be a regular Artin stack of finite type over Z with finite inertia stack. Let π : X → X be a
coarse moduli map. Then the natural map

Het(X,K ⊗ Q) → Het(X,G ⊗ Q)

is a weak equivalence of spectra.

Proof. To show our claim, clearly we may work étale locally on the coarse moduli space X . Thus according to Theorem 1
we may and will assume that X is of the form [Spec R/GLn]. Now we can apply the result of Thomason [13, Theorem 5.7]
to obtain our proposition. �
Remark 5. Proposition 4 also holds for other localized G-theories [6, 5.1.5].
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