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Nous démontrons qu'une représentation discréte, fidéle du groupe libre dans PSL(2, C) sans
parabolique est primitivement stable.
© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version francaise abrégée

On dit qu'un élément du groupe libre est primitif s’il appartient a un systéme de générateurs. On montre qu'une repré-
sentation fidéle et discréte sans parabolique du groupe libre dans PSL(2, C) est primitivement stable, c’est-a-dire, les orbites
des éléments primitifs dans H> sont uniformément quasi-géodésiques. Ce résultat résout la conjecture de Minsky. Pour le
cas avec paraboliques, on suppose que chaque composante de la lamination terminale est doublement incompressible.

1. Introduction

Let F be a free group of rank n and I a bouquet of n oriented circles realizing F with respect to a fixed generating
set X ={x1,...,%:}. Then I" is a Cayley graph of F with respect to X. To every conjugacy class [w] in F is associated a
bi-infinite oriented geodesic in I named w, namely the periodic word determined by concatenating infinitely many copies
of a cyclically reduced representative of w. An element of F is called primitive if it is a member of a free generating set and
let P denote the set consisting of w for conjugacy classes [w] of primitive elements, which is Out(F)-invariant.

Given a representation p : F—PSL;(C) and a base point o € H>, there is a unique p-equivariant map Tpo ! r'—H
mapping the origin e of I" to o and mapping each edge to a geodesic segment. Any W is represented by an F-invariant
family of leaves in I", which map to a family of broken geodesic paths in H?.
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A representation p : F—PSL,(C) is primitive stable if there are constants K, 8 and a base point o € H? such that Tp.0
takes all leaves of P to (K, 8)-quasi geodesics in H3. For each w, we will choose a specified lift W passing through e € I'.
If each w is mapped by 7, , to a uniform quasigeodesic in H? then p will be primitive stable.

Minsky [10] showed that

(i) If p is Schottky then it is primitive stable.
(ii) The set of primitive stable representations up to conjugacy, PS, is open.
(iii) If p is primitive stable then, for every free factor A of F, p|a is Schottky.

In the same paper, he conjectured that

(i) Every discrete faithful representation of F without parabolics is primitive stable.
(ii) A discrete faithful representation of F is primitive stable if and only if every component of its ending lamination is
blocking.

Since every geometrically finite representation of F without parabolics is Schottky and every Schottky group is primitive
stable [10], the following theorem settles down the first conjecture:

Theorem 1. Let M = H?3/p(F) be a geometrically infinite hyperbolic manifold without parabolics. Then p is primitive stable.
We also answer the second conjecture partially.

Theorem 2. Suppose p is a geometrically infinite discrete faithful representation with parabolics with an ending lamination A =
(J A together with parabolic loci. If M = H3/p(F) has a non-cuspidal part Mo = H U E; where E; = S; x [0, o) corresponding
to an incompressible S; is geometrically finite, and where E; corresponding to a compressible S; has a doubly incompressible ending
lamination A;, then p is primitive stable.

2. Proof of the main theorem

Let H be a genus n handlebody. A measured lamination A on dH is doubly incompressible if for any essential disc or
annulus A, i(dA, A) > 0 where i denotes the intersection form. The set of doubly incompressible measured laminations is
strictly bigger than the Masur domain [8]. Let A = {d1,...,8,} be a system of compressing disks on H along which one
can cut H into a 3-ball. A free generating set of m1(H) = F, = F is dual to such a system. Let X = {x1,X2,...,Xp} be the
free generating set dual to A. Wh(g, X), the Whitehead graph of a cyclically reduced primitive word g with respect to a
generating set of F, is defined as follows [14,15,13]. Wh(g, X) is a graph with 2n vertices X U X~ ! = {x1,x1‘1,...,xn,x;1}
and two vertices x, y~! is joined by an edge from x to y—! whenever the string xy appears in g or in a cyclic permutation
of g.

Lemma 2.1 (Whitehead). Let g be a cyclically reduced word in a free group F, and let X be a fixed generating set. If Wh(g, X) is
connected and has no cutpoint, then g is not primitive.

Given a doubly incompressible measured lamination A, we can find a system of compressing disks A which cut H into
a 3-ball so that every arc of A\A is in tightposition with respect to A. For details, see [12,9,10]. When we cut dH along A,
we get 2n boundary circles, each labeled by 8, ,8; and Wh(A, A) can be defined as the graph whose vertices and edges
are 2n boundary circles and arcs in A\ A respectively. It is not difficult to see that Wh(g, X) is equivalent to Wh(g, A) for a
cyclically reduced word g if A is a dual system to X. The following lemma is essentially due to Otal [12], see also [9,10]:

Lemma 2.2. Let A be a doubly incompressible measured lamination. Then there is a generating set with the dual disk system A so that
Wh(x, A) is connected and has no cutpoints.

Let p: F — PSL(2,C) be a geometrically infinite discrete faithful representation without parabolics and M = H3/p(F).
Then by tameness theorem [1,3], M = H U E where H is the compact genus n handlebody and E is the compressible
end homeomorphic to dH x [0, co0). In this case, the existence of the Cannon-Thurston map for free groups, and its main
property can be stated as follows:

Theorem 2.3. (See [11,5].) Let H denote the inverse image of H in H?3 and let A=H U oH where 3H is the Gromov boundary. Define
M, M similarly. Then the inclusion i : H — M extends continuously to a map i H— M Letl(a) = z(b)fora b two distinct points that
are identified by the Cannon-Thurston map. Then a, b are either ideal end-points of a leaf of the ending lamination or ideal boundary
points of a complementary ideal polygon.
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Let us choose a hyperbolic metric on dH and let y be the geodesic homotopic to the projection to dH of the unique
bi-infinite path joining a and b as in the above theorem. Note that an ending lamination A of M consists of just one
minimal component so every leaf is dense and any isolated bi-infinite geodesic spiraling to A has the minimal component
in its closure. Thus the closure of y in dH contains A. Furthermore, by Canary [4], A is in the Masur domain so is doubly
incompressible. Here we give the proof of our main theorem.

Proof of Theorem 1. Recall that M = H3/p(F) = H U (3H x [0, 00)). Regard each cyclically reduced primitive word w as a
covering transformation of I” and let W be the unique bi-infinite path in I" passing through w¥(e) for all k € Z. Then its
image under 7,, passes through o. Suppose p is not primitive stable and let yy,, be the hyperbolic bi-infinite geodesic
which has the same end-points as the broken geodesic 7, ,(Wy) with respect to a chosen hyperbolic metric on dH. We
claim that we can choose a sequence of cyclically reduced primitive words wj, such that y,,, leaves every compact set in
H3 asn—oco. O

Proof of the claim. Note that when we identify the core curves of H with I', if every geodesic is contained in a uniformly
thickened I" in M =H?>/p(F), then p is primitive stable, see Lemma 3.2. in [10]. Since p is not primitive stable, there exists
a sequence of cyclically reduced primitive words {w,} and a sequence of positive numbers {€;} such that the projection
of yw, is not contained in €,-neighborhood of the core curves of H where €, — oo. Thus y,, is not contained in €;-
neighborhood of ‘L'p,o(f’) in H3 and not in e,-neighborhood of Tp,0(Wy) either. In particular, we can choose a vertex of
Tp,0(Wy) whose minimal distance from yy, is larger than €,. Moreover, we can shift wy’s so that the specified vertex is
the base point o as follows.

Let the vertex be p(wivp)o where wy, =g1g2--- gy and vy = g1 --- g for I <k and i € Z. Assuming dygs (0 (W vp)o, yw,) >
€n and noting that yy,, is the axis of the loxodromic isometry p(wjy), we get

dis (0 (Whvn)0, Yaw,) = dgs (P(Vn)0. Yw,) = dizz (0. p(V) ™ Vi, )

and
—1 _
p(Vn) )/wn - )/V;1 WnVn®
Then vrjlwnv,1 is a shifted word so it is also primitive. Finally we get
dyp (o, valwnvn) > €.

Thus Y wavn has to leave every compact set in H> and {vy Twpvy) is our required sequence. This proves the claim. Denote
this sequence again by {wjy} by using a slight abuse of notation. We further reduce {wy} to a subsequence such that for
all i > 0, Wiy = w;g182--- g for some k >0 where gj e XU X~1. This is a variant of Cantor diagonal process mentioned
in [6].

Now let W, be the limit of Wy. Since yy, leaves every compact set of H3 as n — oo, the Cannon-Thurston map i maps
the end-points of W, to a point p € dH>. Let y;, be the geodesic representing w, on the boundary of the handlebody and
let ¥~ be their Hausdorff limit. Here we appeal to Theorem 2.3, which implies that the closure of y must contain the
ending lamination A of M. Since Wh(), A) is connected and has no cutpoints with respect to some A by Lemma 2.2, the
same is true for Wh(y;, A) for large n. But for any primitive word wy, this is impossible by Whitehead Lemma 2.1. O

The proof of Theorem 2 can be done analogously. Call a lamination A blocking with respect to A if it is in tight position
and there exists some k such that every length k subword of the infinite word determined by a leaf of A does not appear
in a cyclically reduced primitive word. Lemma 4.6 in [10] can be generalized as follows:

Lemma 2.4. A connected doubly incompressible lamination A on the boundary of a handlebody is blocking with respect to some
generating set.

Proof of Theorem 2. If M; = H; U E; is the covering manifold corresponding to 71 (S;), then the end E; is bilipschitz home-
omorphic to an end of a simply degenerate hyperbolic manifold homeomorphic to S; x R [2]. Then the rest of the proof is
the combination of [11] and [5]. See [7] for details. O

References

[1] L. Agol, Tameness of hyperbolic 3-manifolds, arXiv:math.GT/0405568, 2004, preprint.

[2] B. Bowditch, Geometric model for hyperbolic manifolds, Southhampton, 2005, preprint.

[3] D. Calegari, D. Gabai, Shrinkwrapping and the taming of hyperbolic 3-manifolds, J. Amer. Math. Soc. 19 (2) (2006) 385-446.

[4] R.D. Canary, Ends of hyperbolic 3-manifolds, J. Amer. Math. Soc. 6 (1) (1993) 1-35.

[5] S. Das, M. Mj, Addendum to ending laminations and Cannon-Thurston maps: Parabolics, arXiv:1002.2090, 2010, preprint.

[6] WJ. Floyd, Group completions and limit sets of Kleinian groups, Invent. Math. 57 (1980) 205-218.

[7] W. Jeon, I. Kim, On primitive stable representations of geometrically infinite handlebody hyperbolic 3-manifolds, arXiv:1003.2055, 2010, preprint.



910 W. Jeon, I. Kim / C. R. Acad. Sci. Paris, Ser. I 348 (2010) 907-910

[8] L. Kim, Divergent sequences of function groups, Differential Geom. Appl. 26 (6) (2008) 645-655.
[9] L. Kim, C. Lecuire, K. Ohshika, Convergence of freely decomposable Kleinian groups, arXiv:0708.3266, 2004, preprint.
[10] Y. Minsky, On dynamics of Out(F,) on PSLy(C) characters, arXiv:0906.3491, 2009, preprint.
[11] M. Mj, Cannon-Thurston maps for Kleinian groups, arXiv:1002.0996, 2010, preprint.
[12] J.-P. Otal, Courants géodésiques et produits libres, Thése d’Etat, Université de Paris-Sud, Orsay, 1988.
[13] J.R. Stallings, Whitehead graphs on handlebodies, 1996, preprint.
[14] J.H.C. Whitehead, On certain sets of elements in a free group, Proc. London Math. Soc. 41 (1936) 48-56.
[15] J.H.C. Whitehead, On equivalent sets of elements in a free group, Ann. of Math. 37 (1936) 780-782.



	Primitive stable representations of geometrically inﬁnite handlebody hyperbolic 3-manifolds
	Version française abrégée
	Introduction
	Proof of the main theorem
	References


