
C. R. Acad. Sci. Paris, Ser. I 348 (2010) 897–900
Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Partial Differential Equations
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In this Note we give a description of the continuous spectrum of the linearized Euler
equations in three dimensions. Namely, for all but countably many times t ∈ R, the
continuous spectrum of the evolution operator Gt is given by a solid annulus with radii etμ

and etM , where μ and M are the smallest and largest, respectively, Lyapunov exponents of
the corresponding bicharacteristic-amplitude system of ODEs.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

On donne dans cette Note une description du spectre continu de l’équation d’Euler
linearisée en dimension 3. Précisément, pour presque tout t ∈ R, le spectre continu de
l’opérateur d’évolution Gt est constitué d’un anneau de rayons etμ et etM , où μ et M sont,
respectivement, le plus petit et le plus grand exposant de Lyapunov du système d’EDO
bicaractéristique-amplitude associé.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Background

This Note addresses the geometric structure of the continuous spectrum (in Browder or Fredholm sense) of the linearized
three-dimensional Euler equation. The question has its origin in the so-called elliptic instabilities of ideal fluids found
implicated in transition to turbulence of some lamina flows in a subcritical range of Reynolds numbers (see Bayly [1], Patera
and Orszag [7], Pierrehumbert [8]). The works of Lifschitz and Hameiri [5], and Friedlander and Vishik [3] laid the basis
for a general approach to shortwave instabilities which incorporated elliptic and a broad range of other equilibria, including
those possessing exponential stretching of trajectories. In [14] Vishik draws a connection between shortwave instabilities
and the essential spectrum of the linearized Euler equation, as opposed to the point spectrum, and describes the essential
spectral radius in terms of the maximal Lyapunov–Oseledets exponent of a bicharacteristic-amplitude system of ODEs, BAS
for short (see below). Further investigation on the structure of the spectrum continued in a series of papers [4,11,12,10],
where the Sacker–Sell theory of linear skew-product flows was introduced into the subject. It was shown that in general
the shortwave instabilities and the corresponding points of the essential spectrum of the Euler equations are linked to the
dynamical spectrum of the BAS (in the Sacker–Sell sense). At the same time the spectrum in two dimensions was completely
described in [11] by a direct construction of approximate eigenfunctions. Thus, the spectrum of the Euler semigroup is a
solid annulus centered at the origin, while the essential spectrum of the generator is the corresponding vertical band, so
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that the two are related by the Spectral Mapping Theorem. Over the past several years attempts were made to find a similar
description in three dimensions. In this Note we offer a complete answer to this question on the level of the semigroup
proving that, just as in two dimensions, its essential spectrum is given by a solid annulus. A partial description of the
spectrum for the generator was also provided in [10]. However, the spectral mapping theorem in this case remains open,
leaving a possibility for further investigation.

2. Technical description of the result

Let u0 ∈ (C2(T3))3 be a solution to the stationary Euler equations

(u0 · ∇)u0 + ∇p = 0, ∇ · u0 = 0, (1)

on the three-dimensional torus T3. Evolution of small perturbations to u0 is described up to the linear approximation by
the system

vt = −(u0 · ∇)v − (v · ∇)u0 − ∇q, ∇ · v = 0. (2)

The solution map for (2) is given by a C0-group {Gt}t∈R of operators acting on the energy space L2
div = (L2

div(T
3))3 of

divergence-free vector fields. The method of geometric optics projects evolution of oscillating localized perturbations of the
form v(x, t) = b(x, t)eiS(x,t)/δ + O (δ), 0 < δ � 1, where the initial amplitude b(x,0) = b0(x) and phase S(x,0) = ξ0 · x are
given, and ξ0 · b0(x) = 0 for all x ∈ T3. If written in the Lagrangian coordinates of the flow u0, x0 → ϕt(x0), the evolution
of the vectors b(t) = b(ϕt(x0), t) and ξ(t) = ∇ S(ϕt(x0), t) is governed by the bicharacteristic-amplitude system (BAS) of
ODEs:

xt = u0(x), x(0) = x0, (3a)

ξt = −∂u0(x)�ξ, ξ(0) = ξ0 ⊥ b0, (3b)

bt = −∂u0(x)b + 2
(
∂u0(x)b, ξ

)
ξ |ξ |−2, b(0) = b0. (3c)

One can see that b · ξ = 0 is a conservation law of (3)which is consistent with the incompressibility of the flow. We view
Eqs. (3a)–(3b) as a Hamiltonian system over the cotangent bundle T ∗T3 = T3 ×R3, with the Hamiltonian H(x, ξ) = u0(x) · ξ .
The corresponding flow projected onto the compact space Ω = Tn × Sn−1 is given by

χt(x0, ξ0) =
(
ϕt(x0),

∂ϕ−�
t (x0)ξ0

|∂ϕ−�
t (x0)ξ0|

)
. (4)

As the amplitude equation (3c) is homogeneous in ξ it can be written in the form bt = a0(χt(x0, ξ0))b. Therefore, the
fundamental matrix solution of (3c), Bt(x, ξ) defines a cocycle over the flow {χt} on the fibre bundle F with base Ω and
fibers given by F (x, ξ) = F (ξ) = {b ∈ C3: b · ξ = 0}. We call it the b-cocycle. Let ΣB denote the dynamical spectrum of
the b-cocycle, that is, the set of λ ∈ R such that the rescaled cocycle Bλ

t = e−λt Bt does not have exponential dichotomy
(uniform exponential hyperbolicity) on the bundle, see [9]. In the resent paper [12], we showed a key connection between
the Fredholm spectrum of Gt and the dynamical spectrum ΣB , expressed by the following two identities:

σΦ

(
Gt; L2

div

) = {
z ∈ C: |z| ∈ etΣB

}
, (5)

for all but countably many t ∈ R, and∣∣σΦ

(
Gt; L2

div

)∣∣ = etΣB , (6)

for all t without exceptions. Here σΦ stands for the Fredholm spectrum over L2
div. The classical results of Sacker and Sell on

the structure of a dynamical spectrum, see [9], in our case reveal that ΣB is either a single interval [μ, M] or the union
of at most two disjoint intervals, as limited by the dimension of the fibers F (ξ). The main contribution of this Note is to
add one last technical piece to (5)–(6), which is to show that ΣB is in fact a single interval. We thus obtain the following
theorem:

Theorem 2.1. Let μ and M be the minimal and maximal Lyapunov–Oseledets exponents of the b-cocycle, respectively. Then the fol-
lowing identity:

σess
(
Gt; L2

div

) = σΦ

(
Gt; L2

div

) = {
z ∈ C: etμ � |z| � etM}

(7)

holds for all but countably many t ∈ R, while the identity∣∣σess
(
Gt; L2

div

)∣∣ = ∣∣σΦ

(
Gt; L2

div

)∣∣ = [
etμ, etM]

(8)

holds for all t ∈ R without exception.

Here σess stands for the essential spectrum in the Browder sense [2]. We added it to the statement as this is the type of
spectrum that was examined in all the previous works. As we see from (7) it is in fact the same as the Fredholm spectrum
for almost all t . The identities (7)–(8) for σess follow immediately from the identities for σΦ due to the general inclusion
σΦ⊂σess and the Nussbaum Theorem [6] on the equality between the spectral radii (applied also to the inverse of Gt ).
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3. Connectedness of the dynamics spectrum

Let us suppose, on the contrary, that Σ = [μ,γ1] ∪ [γ2, M], where γ1 < γ2. Then there exists a continuous projection-
valued function

P (x, ξ) : F (ξ) → F (ξ) (9)

corresponding to the exponential splitting of the cocycle Bt . So, for a small ε > 0 and λ ∈ (γ1, γ2) there are constants
c, C > 0 such that

∥∥Bλ
t (x, ξ)b

∥∥ � Ce−εt‖b‖, t > 0, for all b ∈ Rg P (x, ξ); (10)∥∥Bλ
t (x, ξ)b

∥∥ � ceεt‖b‖, t > 0, for all b ∈ Ker P (x, ξ). (11)

Moreover, relations (10) and (11) characterize the range and kernel of P (x, ξ), respectively.
Let us fix an arbitrary x0 ∈ T3, and consider the splitting

F (ξ) = Rg P (x0, ξ) ⊕ Ker P (x0, ξ). (12)

Since the dimension of F (ξ) over C is two, and (12) is non-trivial, the dimension of Rg P (x0, ξ) is one. Let us now fix a
finite local coordinate chart {U j} j∈ J of S2. For each j ∈ J we can find a continuous mapping

ξ → b j
C
(ξ) ∈ F (ξ), ξ ∈ U j,

with ‖b j
C
(ξ)‖ = 1, such that

Rg P (x0, ξ) = [
b j

C
(ξ)

]
C
, (13)

where [·]C denotes the linear span over C.
We will now de-complexify the spaces given by (13). To this end, let us write

b j
C
(ξ) = b j

re(ξ) + ib j
im(ξ),

where b j
re(ξ) and b j

im(ξ) are real vectors. Since b j
C
(ξ) · ξ = 0, and ξ is real, we also have

b j
re(ξ),b j

im(ξ) ∈ F (ξ).

Furthermore, the cocycle Bt , being the fundamental matrix of solutions of a system with real coefficients, maps real vectors
to real vectors. Thus, we obtain∥∥Bλ

t (x0, ξ)b j
re(ξ)

∥∥ + ∥∥Bλ
t (x0, ξ)b j

im(ξ)
∥∥ ∼ ∥∥Bλ

t (x0, ξ)b j
C
(ξ)

∥∥ � Ce−εt,

for all t > 0. This implies that both vectors b j
re(ξ) and b j

im(ξ) belong to Rg P (x0, ξ), span it over C, and are linearly depen-
dent over R. Let us define the map

L j(ξ) = [
b j

re(ξ),b j
im(ξ)

]
R
, ξ ∈ U j . (14)

We see that each L j(ξ) is a one-dimensional subspace of the real tangent plane to the surface of the sphere S2 at ξ . It is
not hard to see that L j ’s agree on intersections of the charts. Indeed, let ξ ∈ U j ∩ Uk , for some j �= k. According to (13),

vectors b j
C
(ξ) and bk

C
(ξ) are linearly dependent over C. Thus, for some z = x + iy, b j

C
(ξ) = zbk

C
(ξ), which implies linear

dependencies

b j
re(ξ) = xbk

re(ξ) − ybk
im(ξ), (15)

b j
im(ξ) = ybk

re(ξ) + xbk
im(ξ). (16)

It is then clear that L j(ξ) = Lk(ξ). As a result, (14) defines a continuous one-dimensional subbundle of the tangent bundle
of S2. According to [13, Theorem 27.16], one can then select a continuous non-vanishing tangent field on the sphere, which
contradicts the classical Hairy Ball Theorem.

Remark 3.1. A simple example disclosed in [12] shows that the “all but countable many” condition in Theorem 2.1 is
essential. Consider a two-dimensional parallel shear flow with constant profile, u0 = 〈U ,0〉. The linearized equation (2)
takes the form vt = −U∂x1 v . We then obtain Gt v0(x1, x2) = v0(x1 − Ut mod 2π, x2). So, the spectrum of Gt is the unit
circle for all t /∈ πU−1Q, and a finite set of the circle otherwise.
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Remark 3.2. It is desired to obtain a similar description of the essential spectrum for the generator L, which would expo-
nentially correspond to the solid annulus. So far partial results has been given in [10]. Let us consider the closed subset
Ω⊥ = {(x, ξ) ∈ Ω: u0(x) · ξ = 0}. The flow χt leaves Ω⊥ invariant. We can therefore consider the restrictions of the flow,
χ⊥

t , and the cocycle B⊥
t on the fiber bundle F ⊥ on Ω⊥ with the same fibers. Let ΣB⊥ be the corresponding dynamical

spectrum of the cocycle {B⊥
t }. It was shown in [10] that ΣB⊥⊂Re(σess(L)). We can see now that if there is a stagnation

point x0 ∈ T3 of the flow, i.e. u0(x0) = 0, then the corresponding x0-slice of Ω⊥ is (again) the sphere S2. So, the argument
above applies with this specific choice of x0, which implies that ΣB⊥ = [μ⊥, M⊥], for some μ⊥ � μ and M⊥ � M . It remain
to be seen, however, whether ΣB⊥ is in fact the same as ΣB . So far, it has been established only in the two-dimensional
case, see [4,11].
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