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In this Note we show that under suitable conditions on the data we can construct
a sequence of solutions of the stochastic second grade fluid that converges to the
probabilistic strong solution of the stochastic Navier–Stokes equations when the stress
modulus α tends to zero.
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r é s u m é

Dans cette Note nous montrons que, sous des hypothèses appropriées sur les données,
on peut construire une suite de solutions fortes des équations stochastiques pour les
fluides de grade deux qui convergent vers les solutions fortes probabilistes des équations
stochastiques de Navier–Stokes quand le module de contrainte α tend vers zéro.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and main result

Let D = [0, L]2 ⊂ R
2, L > 0, be a periodic square, T > 0 a fixed time. We consider a complete probability space (Ω, F , P )

endowed with the filtration F t , 0 � t � T , which is the σ -field generated by a given R
m-valued standard Wiener process

{W (s), 0 � s � T } and the null sets of F . In this Note we investigate the behavior of the probabilistic strong solution of the
following problem:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

d
(
uα − α�uα

) + (−ν�uα + curl
(
uα − α�uα

) × uα + ∇P
)

dt = F dt + G dW in Ω × (0, T ] × D,

div uα = 0 in Ω × (0, T ] × D,∫
D

uα dx = 0 in Ω × (0, T ],

uα(0) = u0 in Ω × D,

(1)

when α → 0. The system (1), which is to be understood in the sense of distributions, is the equation of motion for an
incompressible second grade fluid driven by random external forces. Here uα is the velocity of the fluid, P is a modified
pressure given by
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P = −p̃ − (1/2)
∣∣uα

∣∣2
R2 + αuα · �uα + (α/4) tr

(∇uα + (∇uα
)t)

.

Throughout we assume that (1) is subject to the periodic boundary condition. We refer to [10] and [7] for further reading
on fluid of complexity two and on second grade fluids. These fluids are non-Newtonian and modelling a large class of
dilute polymeric solutions, industrial fluids, slurry flows and food rheology. In the deterministic case, i.e. when G(t, x) ≡ 0,
existence and uniqueness results are given in [6,5] for instance. It is known from [8] that under general assumption on the
data the weak solution (in the partial differential equations sense) of second grade fluids equations converges weakly to the
weak solution of the Navier–Stokes equations. We also refer to [3] for interesting discussions related to their relationship
with other fluid models. Corresponding results for the stochastic case have not been established yet. The existence and
uniqueness results of probabilistic strong solution have only recently been proved in [12]. In this Note, we show that we
can construct a sequence uα j of stochastic strong solutions of (1) which converges in a certain sense (see Theorem 1.1 and
Remark 1.2) to the stochastic strong solution of the stochastic Navier–Stokes equations (SNSE) as α j → 0.

Throughout this Note we set X = X × X for any Banach space X . The set of all periodic divergence free and infinitely
differentiable functions with zero space average in D is denoted by V , and we set V (resp. H) its closure in H

1(D) (resp.
in L

2). We endow H with the L
2-scalar product denoted by (. , .). The space V is a Hilbert space with the gradient scalar

product ((. , .)) which is equivalent to the usual H
1(D)-scalar product and the scalar product

(u, v)V = (u, v) + α
(
(u, v)

)
.

For any Banach space X , p, r � 1, we set L p,r(0, T ,Ω, X) = L p(Ω, F , P ; Lr(0, T ; X)); see [11] or [13] for the definitions of
these spaces. We denote by C any unessential positive constant independent of α, which may change from one line to the
next.

We assume that

(I) F = F (t, x) is a V-valued function defined on [0, T ] × D such that
∫ T

0 |F (t, x)|p
V

< ∞, for any 2 � p < ∞.

(II) G = G(t, x) is a V
⊗m-valued function defined on [0, T ] × D such that

∫ T
0 |G(t, x)|p

V⊗m < ∞, for any 2 � p < ∞.
(III) We also assume that u0 ⊂ V ∩ H

3 is non-random and that there exists a positive constant C independent of α such
that |u0|V < C . Suppose also that ν > 0.

Under the assumptions (I), (II) and (III) it was proved in [12] that for the prescribed stochastic basis (Ω, F , P , F t) there
exists an unique F t -adapted process uα such that (1) holds P -a.s. in the sense of distributions. The process uα satisfies

E sup
0�t�T

∣∣uα
∣∣p
V

+ E sup
0�t�T

∣∣curl
(
uα − α�uα

)∣∣p
< ∞, ∀ 2 � p < ∞. (2)

Moreover, almost surely the paths of the solution are V-valued weakly continuous.
The main result of this Note is the following:

Theorem 1.1. Under the hypotheses (I)–(III) there exist a probability space (Ω̄, F̄ , P̄ ), a family of probability measures (Πα j ), a
probability measure Π and stochastic processes (W α j , uα j ), (W̄ , v) such that the law of (W α j , uα j ) (resp. (W̄ , v)) is Πα j (resp. Π )
and W α j → W̄ uniformly P̄ -a.s. when j → ∞ (α j → 0). The pair (W α j , uα j ) satisfies P̄ -a.s. (1) in the sense of distributions and as
j → ∞ (α j → 0)

uα j ⇀ v, weakly in Lp(
Ω̄, F̄ , P̄ ; L2(0, T ;V)

)
, (3)

uα j ⇀ v weakly- ∗ in Lp(
Ω̄, F̄ , P̄ ; L∞(0, T ;H)

)
, (4)

for 2 � p < ∞, and (Ω̄, F̄ , P̄ , v, W̄ ) is a solution of the SNSE:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dv + (−ν�v + (v · ∇v) + ∇P
)

dt = F dt + G dW̄ in Ω̄ × (0, T ] × D,

div v = 0 in Ω̄ × (0, T ] × D,∫
D

v dx = 0 in Ω̄ × (0, T ],

v(0) = u0 in Ω̄ × D.

(5)

Remark 1.2. Since we are in 2-D then it is known that under our hypotheses (I)–(III) the problem (5) has a probabilistic
strong solution which is unique, see for example [9]. This implies that the process v of the above theorem is a probabilistic
strong solution of the stochastic Navier–Stokes equations (5).

We refer for instance to [1,2] for definition and existence results related to probabilistic weak solution of the SNSE.
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2. Sketch of the proof

We show that for α ∈ (0,1) we have:

E sup
0�s�T

(∣∣uα(s)
∣∣2 + α

∥∥uα(s)
∥∥2) p

2 + E

( T∫
0

∥∥uα(s)
∥∥2

ds

) p
2

< C, ∀ 2 � p < ∞. (6)

We also have that for any δ ∈ (0,1):

E sup
|θ |�δ

T −δ∫
0

∣∣uα(t + θ) − uα(t)
∣∣2
H−4 � Cδ. (7)

Indeed by setting Φ = P(uα − α�uα) (P is the Leray projector), we show that

∣∣Φ(t + θ) − Φ(t)
∣∣2
H−4 � Cθ

t+θ∫
t

{
ν
∣∣�uα

∣∣2
H−4 + ∣∣uα · ∇uα

∣∣2
H−4 + α2

∑
j,k

∣∣∂ j∂k
(
uα

j ∂kuα
)∣∣2

H−4

}
dt

+ Cθ

t+θ∫
t

{
α2

∑
j,k

[∣∣∂ j
(
∂kuα

j ∂kuα
)∣∣2

H−4 + ∣∣∂k
(
∂kuα

j ∇uα
j

)∣∣2
H−4

] + |F |2
}

dt + 2

∣∣∣∣∣
t+θ∫
t

G dW

∣∣∣∣∣
2

H−4

.

(8)

Thanks to Sobolev product formulas (see for example [4]) we have∣∣uα · ∇uα
∣∣2
H−4 � C

∣∣uα
∣∣2∣∣∇uα

∣∣2
, (9)

α2
∣∣∂ j∂k

(
uα

j ∂kuα
)∣∣2

H−4 � Cα2
∣∣uα

∣∣2∣∣∇uα
∣∣2

, (10)

α2
∣∣∂ j

(
∂kuα

j ∂kuα
)∣∣2

H−4 � αCα
∣∣∇uα

∣∣2∣∣∇uα
∣∣2

, (11)

α2
∣∣∂k

(
∂kuα

j ∇uα
j

)∣∣2
H−4 � αCα

∣∣∇uα
∣∣2∣∣∇uα

∣∣2
. (12)

With these estimates along with the Martingale inequality, the estimate (6) and the assumption on G , we deduce from (8)
that

E

T −δ∫
0

sup
0�θ�δ

∣∣Φ(t + θ) − Φ(t)
∣∣2
H−4 dt � Cδ.

This implies that (7) holds for θ � 0 (the case θ < 0 also holds).
Now, we introduce the mapping Φ :ω �→ (W (ω), uα(ω, .)). The family of probability measures (Πα) is defined on S =

C(0, T ;R
m)× L2(0, T ;H) by Πα(S) = P (Φ−1(S)), for any S ∈ B(S) (B(S) is the Borel σ -algebra of S). The family {Πα: 0 <

α < 1} is tight. Thus by Prokhorov’s theorem we can extract from (Πα) a subsequence (Πα j ), which weakly converges to
a probability measure Π on S. Skorokhod’s embedding theorem ensures the existence of a complete probability space
(Ω̄, F̄ , P̄ ) and random variables (W α j , uα j ) and (W̄ , v) defined on (Ω̄, F̄ , P̄ ) with values in S such that the probability
law of (W α j , uα j ) (resp. (W̄ , v) ) is Πα j (resp. Π ) and

W α j
(
resp. uα j

) → W̄ (resp. v) in C
(
0, T ;R

m)
(resp. L2(0, T ;H) P̄ -a.s. (13)

Moreover, letting F̄ t be the σ -algebra generated by (W̄ (s), v(s)),0 � s � t and the null sets of F̄ , we can show that W̄ is
an F̄ t -adapted standard R

m-valued Wiener process. We show that for any j � 1, φ ∈ V , for all t ∈ [0, T ], the following holds
P̄ -a.s. (see [11])

(
uα j , φ

)
V

+
t∫

0

{(
νAuα j + B

(
uα j , uα j

)
, φ

)}
dt = (u0, φ)V +

t∫
0

(
R
(
uα j

) + F
(
uα j

)
, φ

)
dt +

t∫
0

(G, φ)dW α j , (14)

where B(uα j , uα j ) = P(uα j .∇uα j ) and

R
(
uα j

) = α
∑

P
(
∂i∂k

(
u

α j

i ∂kuα j
) + ∂i

(
∂ku

α j

i ∂kuα j
) − ∂k

(
∂ku

α j

i ∇u
α j

i

))
.

i,k



790 P.A. Razafimandimby, M. Sango / C. R. Acad. Sci. Paris, Ser. I 348 (2010) 787–790
Since uα j satisfies (14) then uα j satisfies the estimate (6). Consequently, we can extract from (uα j ) a subsequence denoted
by the same symbol such that

uα j ⇀ v weak- ∗ in L2(Ω̄, F̄ , P̄ ; L∞(0, T ;H)
)
,

uα j ⇀ v weakly in L2(Ω̄, F̄ , P̄ ; L2(0, T ;V)
)
. (15)

We derive from (13), the estimate (6) and Vitali’s Theorem that

uα j → v strongly in L2(Ω̄, F̄ , P̄ ; L2(0, T ;H)
)
. (16)

Because of (9)–(12) and (6) we have(
R
(
uα j

)
, φ

) → 0 in L2(Ω̄, F̄ , P̄ ; L2(0, T )
)
, ∀φ ∈ V.

Thanks to (16) we show that

−
∑
i,k

Ē

∫
D×[0,T ]

u
α j

i ∂iφkζu
α j

k dx ⊗ dt → −
∑
i,k

Ē

∫
D×[0,T ]

vi∂iφkζ vk dx ⊗ dt = Ē

T∫
0

〈
B(v, v), ζφ

〉
dt,

for any ζ ∈ L∞(Ω̄ × [0, T ],d P̄ ⊗ dt) and φ ∈ V . That is〈
uα j · ∇uα j , φ

〉
⇀ 〈v · ∇v, φ〉 weakly in L2(Ω̄, F̄ , P̄ ; L2(0, T )

)
for any φ ∈ V.

We readily have

t∫
0

(G, φ)dW α j ⇀

t∫
0

(G, φ)dW̄ weakly in L2(Ω̄, F̄ , P̄ ; L2(0, T )
)

for any φ ∈ V.

It follows from (6) and (16) that(
uα j − α j�uα j − v, φ

) → 0 strongly in L2(Ω̄, F̄ , P̄ ; L2(0, T )
)

for any φ ∈ V.

Using all these convergences we can derive from (14) that the following holds almost surely

(v, φ) + ν

t∫
0

{(
(v, φ)

) + (
P(v · ∇v),φ

)}
ds = (u0, φ) +

t∫
0

(F , φ)ds +
t∫

0

(G, φ)dW̄,

for any φ ∈ V and t ∈ [0, T ].
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