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We prove that the difference between the numbers of positive swallowtails and negative
swallowtails of the Blaschke normal map for a given convex surface in affine space is
equal to the Euler number of the subset where the affine shape operator has negative
determinant.
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r é s u m é

Nous prouvons que la différence entre les nombres de queues d’aronde positives et queues
d’aronde négatives de l’application normale de Blaschke, pour une surface convexe donnée
dans l’espace d’affine, est égale au nombre d’Euler du sous-ensemble où l’opérateur de
forme affine a un déterminant négatif.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Throughout this Note, we assume that M2 is a compact oriented 2-manifold without boundary. Let ϕ be a bundle
homomorphism of the tangent bundle T M2 into a vector bundle E of rank 2 over M2. A point p on M2 is called a singular
point if the linear map ϕp : T p M → E p is not bijective. We denote by Σϕ the set of singular points of ϕ . We assume that E
is orientable, that is, there is a non-vanishing section μ : M2 → E∗ ∧ E∗ , where E∗ is the dual vector bundle of E . We now
fix a metric 〈 , 〉 on E . Multiplying a suitable C∞-function on M2, we may assume that μ(e1, e2) = 1 holds for any oriented
orthonormal frame e1, e2 on E . By using a positively oriented local coordinate system (U ; u, v) of M2, the signed area form
d Â, the signed area density function λ and the (un-signed) area form dA are defined by

d Â := ϕ∗μ = λdu ∧ dv, dA := |λ|du ∧ dv.

Both d Â and dA are independent of the choice of (u, v), and are 2-forms globally defined on M2. When ϕ has no singular
points, these two forms coincide up to sign. We set

M+ := {
p ∈ M2 \ Σϕ; d Âp = dAp

}
, M− := {

p ∈ M2 \ Σϕ; d Âp = −dAp
}
.

The singular set Σϕ coincides with ∂M+ = ∂M− . A singular point p(∈ Σϕ) on M2 is called non-degenerate if the derivative
dλ does not vanish at p. In a neighborhood of a non-degenerate singular point, the singular set can be parametrized as a
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regular curve γ (t) on M2, called the singular curve. The tangential direction of γ is called the singular direction. The direction
of the kernel of ϕγ (t) is called the null direction, which is one-dimensional. There exists a smooth non-vanishing vector field
η(t) along γ pointing in the null direction, called the null vector field.

Definition 1.1. Take a non-degenerate singular point p ∈ M2 and let γ (t) be the singular curve satisfying γ (0) = p. Then
p is called an A2-point if the null direction η(0) is transversal to the singular direction γ̇ (0) = dγ /dt|t=0. If p is not an
A2-point, but satisfies that d(γ̇ (t) ∧ η(t))/dt does not vanish at p = γ (0), it is called an A3-point, where ∧ is the exterior
product on T M2. We fix an A3-point p. If the interior angle of the region M− (resp. M+) at p with respect to the pull-back
metric ds2 := ϕ∗〈 , 〉 is zero, then it is called a positive (resp. negative) A3-point. (A3-points are either positive or negative,
see [6]).

We now fix a metric connection D of (E, 〈 , 〉). Let γ (t) be a regular curve on M2 consisting only of A2-points. Take a
null vector field η(t) such that (γ̇ , η) is a positive frame of T M2 along γ . Then

κs(t) = sgn
(
dλ

(
η(t)

))μ(ϕ(γ̇ (t)), Dtϕ(γ̇ (t)))

〈ϕ(γ̇ (t)),ϕ(γ̇ (t))〉3/2
(1)

is called the singular curvature of γ at t (see [5] and [6]).
For an oriented orthonormal frame field e1, e2 of E defined on U ⊂ M2, there is a unique 1-form ω on U such that

D X e1 = −ω(X)e2, D X e2 = ω(X)e1. Then dω does not depend on the choice of e1, e2, and there is a C∞-function Kϕ,D on
M2 \ Σϕ such that

dω = Kϕ,D d Â. (2)

We call Kϕ,D the Gaussian curvature of D with respect to ϕ . Let D̄ be the pull-back of D on M2 \ Σϕ . Let σ(t) be a regular
curve on U \ Σϕ with the arclength parameter t with respect to ds2 = ϕ∗〈 , 〉. We take a unit normal vector n(t) such that
(σ̇ ,n) gives a positive frame on T M2. On the other hand, we take n̂(t) ∈ E such that (ϕ(σ̇ ), n̂) gives a positive frame on E .
We can define two geodesic curvatures:

κg = ds2(D̄t σ̇ (t),n(t)
)
, κ̂g = 〈

Dtϕ
(
σ̇ (t)

)
, n̂(t)

〉
.

Here, κ̂g(t) is well defined even when σ(t) passes through the set Σϕ . Since ϕ(n) = sgn(λ)n̂, it holds that κg = sgn(λ)κ̂g . We
set (ē1, ē2) = (ϕ−1(e1),ϕ

−1(e2)) if U ⊂ M+ and set (ē1, ē2) = (ϕ−1(e2),ϕ
−1(e1)) if U ⊂ M− . Then (ē1, ē2) gives an oriented

orthonormal frame on T M2, and there is a C∞-function θ = θ(t) such that σ̇ = cos θ ē1 + sin θ ē2 and n = − sin θ ē1 + cos θ ē2.
Then we get

κg dt = dθ − (sgn λ)ω. (3)

If the connection D satisfies the condition

D Xϕ(Y ) − DY ϕ(X) − ϕ
([X, Y ]) = 0 (4)

for all vector fields X, Y on M2, (E, 〈 , 〉, D,ϕ) is called a coherent tangent bundle. Under the condition (4), D̄ gives the
Levi-Civita connection of ds2 on M2 \Σϕ , and Kϕ,D coincides with the usual Gaussian curvature. We consider a contractible
triangular domain 
ABC on M2 \ Σϕ such that it lies on the left-hand side of the regular arcs AB, BC, CA which meet
transversally at A, B, C ∈ M2. By applying the Stokes formula, (2) and (3) yield that

� A + � B + � C − π =
∫

∂
ABC

κg dτ +
∫


ABC

Kϕ,D dA, (5)

where � A, � B, � C are the interior angles of the domain 
ABC. To prove this, we do not need to assume that D̄ is the
Levi-Civita connection. However, we must remember that Kϕ,D is not the usual Gaussian curvature. One crucial point in
this setting is that∫

M2

Kϕ,D d Â = 1

2π

∫

M2

dω

coincides with the Euler characteristic χE of the vector bundle E . In [6] (see also [5]), the authors gave the following two
Gauss–Bonnet type formulas:

χE = χ
(
M+) − χ

(
M−) + S+ − S−, 2πχ

(
M2) =

∫

M2

Kϕ,D dA + 2
∫

Σϕ

κs dτ , (6)

under the assumption that (E, 〈 , 〉, D,ϕ) is a coherent tangent bundle, where dτ is the arclength element on the singular
set and S+ , S− are the numbers of positive and negative A3-points, respectively. After the publication of [6], the authors
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found that the proof in [6] is based only on the formula (5) and the identity κg = sgn(λ)κ̂g . So we can conclude that
the two formulas (6) hold without assuming (4). Moreover, we can generalize these two formulas to ϕ admitting more
general singularities called “peaks”; in other words, Theorem B in [6] holds on ϕ without assuming (4). If E = T M2, then
χE coincides with χ(M2) = χ(M+) + χ(M−) in our setting. So we get the following:

Theorem 1.2. Let ϕ : T M2 → T M2 be a bundle homomorphism whose singular set consists only of A2 and A3-points. Then 2χ(M−) =
S+ − S− and

∫
M− Kϕ,D d Â = ∫

Σϕ
κs dτ hold.

Let f : M2 → (N3, g) be an immersion into an orientable Riemannian 3-manifold. Then there is a globally defined unit
normal vector field ν along f . We define the shape operator ϕ : T M2 � v 
→ −D vν ∈ T M2, as a bundle homomorphism,
where D is the Levi-Civita connection of (N3, g). A singular point of ϕ is called an inflection point of f . We get the following:

Corollary 1.3 (A generalization of the Bleeker–Wilson formula). Suppose that the shape operator admits only A2 and A3-points. Then
2χ(M−) = I+ − I− holds, where I+ (resp. I−) is the number of positive (resp. negative) A3-inflection points.

The original formula was for the case N3 = R3 (see [2]). In [7], the authors pointed out that the formula holds for space
forms. Also, they gave in [7] several applications of (6) under the assumption (4). However, now we can remove (4), and we
get also the results that follow here.

2. Rotation of vector fields

We fix a Riemannian metric ds2 on M2. There is a unique 2-form μ on M2 such that μ(e1, e2) = 1, where e1, e2 is a local
oriented orthonormal frame field on M2. Let X be a vector field on M2. The C∞-function rot(X) := μ(De1 X, De2 X) defined
on M2 is called the rotation of X , where D is the Levi-Civita connection of (M2,ds2). Consider a bundle homomorphism
ϕ : T M2 � v 
→ D v X ∈ T M2. The singular set ΣX of ϕ coincides with the zeros of rot(X), called the set of irrotational points.
Moreover, an A3-singular point is called an irrotational cusp. In fact, if M2 = R2 is the Euclidean plane, then X induces a map
X̃ : R2 → R2, and A3 (resp. A2) points correspond to cusps (resp. folds) of X̃ (see [7]). Suppose that X admits only A2 and
A3-irrotational points. Then ΣX consists of a finite disjoint union of closed regular curves γ1, . . . , γm on M2 such that M+
lies in the left-hand side of each γ j . Then the singular curvature on γ j is given by κs := μ( Ẋ, Ẍ)/| Ẋ|3 (we propose to call it
the irrotational curvature), where Ẋ = D γ̇ j(t) X and Ẍ = D γ̇ j(t) Ẋ . The following assertion follows directly from Theorem 1.2:

Proposition 2.1. Suppose that X admits only A2 and A3-irrotational points. Then it holds that

2χ
(
M−) = C+ − C−,

∫

M−
Kϕ,D d Â =

∫

ΣX

κs dτ , M− := {
p ∈ M2; rot(X)p < 0

}
,

where C+ (resp. C−) is the number of positive (resp. negative) irrotational cusps.

3. Singularities of Blaschke normal maps on convex surfaces

Let S2 be a 2-sphere and f : S2 → R3 a strictly convex embedding. In affine differential geometry, it is well known that
there are a transversal vector field ξ along f , a torsion free connection ∇ , a bundle homomorphism α : T S2 → T S2 (called
the affine shape operator), and a positive definite symmetric covariant tensor h such that (cf. [4]) D X Y = ∇X Y + h(X, Y )ξ

and D Xξ = −α(X) for any vector fields X , Y on S2, where D is the canonical affine connection on R3. Moreover, such a
structure (ξ,∇,α,h) is uniquely determined up to a constant multiplication of ξ . Here ξ induces a map ξ̃ : S2 → R3 called
the Blaschke normal map. It is obvious that the singular points of α coincide with those of ξ̃ .

Lemma 3.1. The Blaschke normal map ξ̃ is a wave front (cf. [1] for the definition of wave front).

Proof. Consider a non-zero section L : S2 � p 
→ (ξ̃p, νp) ∈ T ∗ R3 = R3 × (R3)∗ , where ν : S2 → (R3)∗ is the map into the
dual vector space (R3)∗ of R3 such that νp(ξ̃p) = 1 and νp(d f (T p S2)) = {0} for each p ∈ S2. Take a local coordinate system
(u1, u2) of S2. Then we have that

νui ( fu j ) = D∂i ν( fu j ) = −ν(D∂i fu j ) = −ν
(∇∂i ∂ j + h(∂i, ∂ j)ξ̃

) = −h(∂i, ∂ j) (i, j = 1,2),

where ∂i := ∂/∂ui and fui := d f (∂i). Since h is positive definite, νu1 , νu2 are linearly independent. Moreover, ν,νu1 , νu2 are
also linearly independent, since ν(d f (T p S2)) = 0. In particular, L induces a Legendrian immersion of S2 into the projective
cotangent bundle P (T ∗ R3) of T ∗ R3. �

By applying the criteria of cuspidal edges and swallowtails (cf. [7]), A2 and A3-points correspond to the cuspidal edges
and swallowtails of the Blaschke normal map ξ̃ . So we get the following:
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Theorem 3.2. Suppose that ξ̃ admits only cuspidal edges and swallowtails. Then 2χ(M−) = S+ − S− holds, where M− := {p ∈
S2;det(α(p)) < 0} and S+ (resp. S−) is the number of positive (resp. negative) swallowtails of ξ̃ .

A different formula for S+ + S− is given by Izumiya and Marar [3].
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