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Abstract

We establish the existence of global in time weak solutions for the equations of asymmetric incompressible fluids with variable
density, when the initial density is not necessarily strictly positive. To cite this article: P. Braz e Silva, E.G. Santos, C. R. Acad.
Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Solutions faibles globales pour les équations des fluides incompressibles asymétriques à densité variable. On établit l’exis-
tence de solutions faibles globales en temps pour les équations des fluides incompressibles asymétriques à densité variable, dans le
cas oú la densité initiale n’est pas strictement positive. Pour citer cet article : P. Braz e Silva, E.G. Santos, C. R. Acad. Sci. Paris,
Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let Ω ⊂ R
3 be an open bounded set. We are interested in the flow of an asymmetric incompressible fluid with

variable density in Ω . So, for a given time T > 0, we consider the equations{
ρ(ut + (u · ∇)u) − (μ + μr)�u + ∇p = 2μr curl w + ρf,
ρ(wt + (u · ∇)w) − (ca + cd)�w − (c0 + cd − ca)∇(div w) + 4μrw = 2μr curl u + ρg,

div u = 0, ρt + u · ∇ρ = 0,

(1)

in Ω × (0, T ), with initial and boundary conditions

u(x, t) = w(x, t) = 0, ∀(x, t) ∈ ∂Ω × (0, T ), (2)

u(x,0) = u0(x), w(x,0) = w0(x), ρ(x,0) = ρ0(x), ∀x ∈ Ω. (3)
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The unknowns u, w, ρ, and p are, respectively, the linear velocity, the angular velocity of rotation of fluid particles,
the mass density and the pressure distribution of the fluid. The functions f and g are given external forces. The positive
constants μ, μr , c0, ca , cd are related with viscosity properties of the fluid, and satisfy c0 + cd > ca .

For the derivation of Eqs. (1) and a discussion about their physical meaning, see [3]. Concerning applications, the
micropolar fluid model has been used, for example, in lubrication theory [4,7], as well as in modelling blood flow in
thin vessels [1].

In [2], some existence and uniqueness results for strong solutions are given, in the case of a strictly positive initial
density. In [5], local in time existence of weak solutions was established (see also [6]). For this local result though,
the initial density is required to satisfy the integrability condition ‖ρ−1

0 ‖L3 < ∞. Here, we announce the existence of
global in time weak solutions, requiring the initial density to be only nonnegative, that is, ρ0 � 0 (see Theorem 2.1).

Our results bring the knowledge about weak solutions of system (1) to the same level of the knowledge about weak
solutions of the variable density Navier–Stokes system [8,9].

2. Preliminaries

We denote by D(Ω) the space of test functions defined in Ω , and by D′(Ω) the space of distributions over Ω . We
use the usual notation for Sobolev spaces

Wm,q(Ω) = {
f ∈ Lq(Ω); ‖Dαf ‖Lq(Ω) < +∞, |α| � m

}
,

for a multi-index α, a nonnegative integer m and 1 � q � +∞. We write Hm(Ω) := Wm,2(Ω) and denote by Hm
0 (Ω)

the closure of D(Ω) in Hm(Ω). If B is a Banach space and T > 0, we denote by Lq([0, T ];B) the Banach space of
B valued functions defined on the interval [0, T ] that are Lq -integrable in Bochner’s sense. By D(0, T ;B), we denote
the space of B valued C∞ functions defined on [0, T ], with compact suppport in (0, T ). Accordingly, we indicate the
space of distributions with values in B by D′(0, T ;B). As it is usual in this context, we denote R

3 valued functions
by bold face letters. We write

V = {
v ∈ (

D(Ω)
)3;∇ · v = 0

}
,

and denote by H and V the closure of V in (L2(Ω))3 and (H 1
0 (Ω))3 respectively.

Some spaces which are not so standard but play an important role in our results are the Nikolskii spaces, defined
as follows: Let B be a Banach space. Given a function f : (0, T ) → B and h > 0, let τhf : (−h,T − h) → B be
the translated function of f , defined by (τhf )(t) = f (t + h). For 1 � q � ∞, 0 < s < 1, the Nikolskii space Ns,q is
defined by

Ns,q(0, T ;B) :=
{
f ∈ Lq(0, T ;B); sup

h>0
h−s‖τhf − f ‖Lq(0,T −h;B) < ∞

}
.

The space Ns,q(0, T ;B) is a Banach space with respect to the norm

‖f ‖Ns,q (0,T ;B) := ‖f ‖Lq(0,T ;B) + sup
0<h<T

[
h−s‖τhf − f ‖Lq(0,T −h;B)

]
.

One may see [9–11] for compactness properties of Nikolskii spaces. Our result is the following:

Theorem 2.1. Let Ω ⊂ R
3 be an open bounded set with Lipschitz boundary. Given T > 0, if u0 ∈ H , w0 ∈ (L2(Ω))3,

ρ0 ∈ L∞(Ω), ρ0 � 0, and f,g ∈ L1(0, T ; (L2(Ω))3), then there exist

u ∈ L2(0, T ;V ), w ∈ L2(0, T ; (H 1
0 (Ω)

)3)
, p ∈ W−1,∞(

0, T ;L2(Ω)
)
, ρ ∈ L∞(

0, T ;L∞(Ω)
)
,

such that

ρu, ρw ∈ L∞(
0, T ; (L2(Ω)

)3) ∩ N
1
4 ,2(0, T ; (W−1,3(Ω)

)3)
,

inf
Ω

ρ0 � ρ(x, t) � sup
Ω

ρ0,

satisfying the equations
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∂ρu
∂t

+ div(ρuu) − (μ + μr)�u + ∇p = 2μr curl w + ρf,

∂ρw
∂t

+ div(ρuw) − (ca + cd)�w − (c0 + cd − ca)∇ div w + 4μrw = 2μr curl u + ρg,

∂ρ

∂t
+ ∇ · (ρu) = 0, div u = 0,

in Ω × (0, T ), the boundary conditions (2), and the weak initial conditions

ρ|t=0 = ρ0,(∫
Ω

ρu · v dx

)
(0) =

∫
Ω

ρ0u0 · v, ∀v ∈ V,

(∫
Ω

ρw · z dx

)
(0) =

∫
Ω

ρ0w0 · z, ∀z ∈ (
H 1

0 (Ω)
)3

.

Remark 1. In [9], the author obtains ρu ∈ N
1
4 ,2(0, T ; (W−1, 3

2 (Ω))3). The theorem above assures improved regularity
for ρu, ρw, and its counterpart for the variable density Navier–Stokes was actually established in [8].

Sketch of the proof. The proof of Theorem 2.1 is based on a semi-Galerkin method, adapting the techniques
used in [9] for the variable density Navier–Stokes system to treat our case of asymmetric fluids. First, one de-
fines V m, Wm, suitable finite dimensional subspaces of V and Ł2(Ω)3, respectively. Then, choose sequences fm,
gm ∈ C([0, T ]; (L2(Ω))3), um

0 ∈ V m, wm
0 ∈ Wm, and ρm

0 ∈ C1(Ω) such that

1

m
+ inf

Ω
ρ0 � ρm

0 � 1

m
+ sup

Ω

ρ0 in Ω, for all m = 1,2, . . . ,

and fm → f, gm → g in L1(0, T ; (L2(Ω))3), um
0 → u0 in H , wm

0 → w0 in (L2(Ω))3, ρm
0 → ρ0 weak-� in L∞(Ω).

Now, for m ∈ N, we call the triplet (ρm,um,wm) an (mth) approximate solution of problem (1)–(3) if ρm ∈ C1(Ω),
um ∈ C1([0, T ];V m), wm ∈ C1([0, T ];Wm) satisfy the equations∫

Ω

(
ρm

(
um

t + (um · ∇)um − fm
) · v + (μ + μr)∇um · ∇v − 2μrwm · curl v

)
dx = 0, ∀v ∈ V m, (4)

∫
Ω

(
ρm

(
wm

t + (um · ∇)wm − gm
) · z + (ca + cd)∇wm · ∇z

+ (c0 + cd − ca)div wm · div z + 4μrwm · z − 2μrum · curl z
)

dx = 0, ∀z ∈ Wm, (5)

ρm
t + um · ∇ρm = 0, (6)

and the initial conditions um|t=0 = um
0 , wm|t=0 = wm

0 , and ρm|t=0 = ρm
0 in Ω . After establishing the existence of

approximate solutions, one derives a priori bounds for them. Since one does not have a positive lower bound for the
initial density, this task is a little bit harder than usual. The key idea here is to derive bounds for the products ρu, ρw.
In special, after considerable work one obtains

∥∥τh(ρ
mum) − ρmum

∥∥
L2(0,T −h;(W−1,3(Ω))3)

� Ch
1
4 ,∥∥τh(ρ

mwm) − ρmwm
∥∥

L2(0,T −h;(W−1,3(Ω))3)
� Ch

1
4 ,

where C is independent of m, which imply ρu, ρw ∈ N
1
4 ,2(0, T ; (W−1,3(Ω))3). These bounds, together with some

other ones, allow one to pass to the limit m → ∞ obtaining the desired solution. �



578 P. Braz e Silva, E.G. Santos / C. R. Acad. Sci. Paris, Ser. I 346 (2008) 575–578
References

[1] T. Ariman, M. Turk, On steady and pulsatile flow of blood, J. Appl. Mech. 41 (1974) 1–7.
[2] J.L. Boldrini, M.A. Rojas-Medar, E. Fernández-Cara, Semi-Galerkin approximation and strong solutions to the equations of the nonhomoge-

neous asymmetric fluids, J. Math. Pures Appl. 82 (11) (2003) 1499–1525.
[3] D.W. Condiff, J.S. Dahler, Fluid mechanical aspects of antisymmetric stress, Phys. Fluids 7 (1964) 842–854.
[4] C. Ferrari, On lubrication with structured fluids, Appl. Anal. 15 (1983) 127–146.
[5] G. Lukaszewicz, On nonstationary flows of incompressible asymmetric fluids, Math. Methods Appl. Sci. 13 (3) (1990) 219–232.
[6] G. Lukaszewicz, Micropolar Fluids. Theory and Applications, Modelling and Simulation in Science, Engineering & Technology, Birkhäuser

Boston, Inc., Boston, MA, 1999.
[7] J. Prakash, P. Sinha, Lubrication theory for micropolar fluids and its application to a journal bearing, Int. J. Engrg. Sci. 13 (3) (1975) 217–323.
[8] J. Simon, Existencia de solución del problema de Navier–Stokes con densidad variable, Existence of solution for the variable density Navier–

Stokes problem, Lecture notes at the University of Sevilla, Spain (in Spanish).
[9] J. Simon, Nonhomogeneous viscous incompressible fluids: existence of velocity, density, and pressure, SIAM J. Math. Anal. 21 (5) (1990)

1093–1117.
[10] J. Simon, Compact sets in the space Lp(0, T ;B), Ann. Mat. Pura Appl. 4 (146) (1987) 65–96.
[11] R. Temam, Navier–Stokes Equations and Nonlinear Functional Analysis, CBMS-NSF Regional Conference Series in Applied Mathematics,

vol. 41, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1983.


