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Abstract

In this Note, we prove that if g is uniformly continuous in z, uniformly with respect to (ω, t) and independent of y, the solution
to the backward stochastic differential equation (BSDE) with generator g, is unique. To cite this article: G. Jia, C. R. Acad. Sci.
Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Un théorême d’unicité de la solution d’une équation différentielle stochastique rétrograde. Dans cette Note, nous démon-
trons que pour une fonction g donnée, uniformément continue en z, uniformément en (ω, t) et indépendante de y l’équation
différentielle stochastique, rétrograde de générateur g, admet une solution unique. Pour citer cet article : G. Jia, C. R. Acad. Sci.
Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

Dans cette Note, nous considérons dans [0, T ] l’EDSR suivante :

yt = ξ +
T∫

t

g(s, ys, zs)ds −
T∫

t

zs dWs, 0 � t � T , (1)

où g(t, ·) est uniformément continue et de plus satisfait les conditions :

H1 g(ω, t, ·) est uniformément continue par rapport à (ω, t) c’est-à-dire qu’il existe une fonction φ de R+ dans
lui-même, continue, non décroissante, de croissance linéaire, sous additive, φ(0) = 0 et telle que
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∣∣g(ω, t, z1) − g(ω, t, z2)
∣∣ � φ

(|z1 − z2|
)
, P -a.s., pour tout t ∈ [0, T ], z1, z2 ∈ Rd .

Nous notons A la constante de croissance linéaire, i.e., pour tout x :
0 � φ(x) � A(x + 1)

pour tout x ∈ R+. De plus nous supposons que g(t,0)t∈[0,T ] est bornée.

Sous ces hypothèses nous démontrons le résultat suivant :

Théorême 0.1. Si g satisfait les hypothèses H1 et ξ ∈ L2(Ω,FT ,P ). Alors la solution de l’équation (1) est unique.

1. Introduction

One dimensional BSDEs are equations of the following type defined on [0, T ]:

yt = ξ +
T∫

t

g(s, ys, zs)ds −
T∫

t

zs dWs, 0 � t � T , (2)

where W is a standard d-dimensional Brownian motion on a probability space (Ω,F , (Ft )0�t�T ,P ) with (Ft )0�t�T

the filtration generated by W . The function g : Ω × [0, T ] × R × Rd → R is called generator of (2). Here T is the
terminal time, and ξ is a R-valued FT -adapted random variable; (g,T , ξ) are the parameters of (2). The solution
(yt , zt )t∈[0,T ] is a pair of Ft -adapted and square integrable processes.

Nonlinear BSDEs were first introduced by Pardoux and Peng [7], who proved the existence and uniqueness of a
solution under suitable assumptions on g and ξ , the most standard of which are the Lipschitz continuity of g with
respect to (y, z) and the square integrability of ξ . An interesting and important question is to find weaker conditions
rather than the Lipschitz one, under which the BSDE (2) still has a unique solution. As a matter of fact, there have
been several works, such as Pardoux and Peng [8], Kobylanski [4] and Briand–Hu [1], etc. In this Note, we will give
a new sufficient condition for the uniqueness of the solution to BSDEs.

In fact, this problem came from a lecture given by Peng at a seminar of Shandong University in October 2005. In
his lecture, Peng conjectured that if g is Hölder continuous in z and independent of y, then (2) has a unique solution.
In this Note, we will prove this conjecture under a more general condition – uniform continuity – instead of Hölder
continuity. In other words, g satisfies the following condition:

(H1) g(ω, t, ·) is uniformly continuous and uniformly with respect to (ω, t), i.e., there exists a function φ from R+
to itself, which is continuous, non-decreasing, subadditive and of linear growth, and φ(0) = 0 such that∣∣g(ω, t, z1) − g(ω, t, z2)

∣∣ � φ
(|z1 − z2|

)
, P -a.s., for all t ∈ [0, T ], z1, z2 ∈ Rd .

Here we denote the constant of linear growth of φ by A, i.e.,

0 � φ(x) � A(x + 1)

for all x ∈ R+ (see Crandall [3]). Moreover (g(t,0))t∈[0,T ] is assumed to be bounded.

Remark 1. Clearly (H1) implies (H1′):

(H1′) g(ω, t, ·) is continuous, and of linear growth, i.e., there exists a positive real number B , such that∣∣g(ω, t, z)
∣∣ � B

(|z| + 1
)
, P -a.s., for all (t, z) ∈ [0, T ] × Rd .

According to the result in [5], (H1′) guarantees the existence of a solution of (2).

This Note is organized as follows. In Section 2 we formulate the problem accurately and give some preliminary
results. Finally, Section 3 is devoted to the proof of the main theorem.
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2. Preliminaries

Let (Ω,F ,P ) be a probability space and W be a d-dimensional standard Brownian motion on this space. Let
(Ft )t�0 be the filtration generated by this Brownian motion: Ft = σ {Ws, s ∈ [0, t]} ∪ N , F = (Ft )t�0, where N is
the set of all P -null subsets.

Let T > 0 be a fixed real number. In this Note, we always work in the space (Ω,FT ,P ). For a positive integer
n and z ∈ Rn, we denote by |z| the Euclidean norm of z. We will denote by H2

n = H2
n(0, T ;Rn), the space of all

F-progressively measurable Rn-valued processes such that E[∫ T

0 |ψt |2 dt] < ∞, and by S2 = S2(0, T ;R) the ele-
ments in H2

1 with continuous paths such that E[supt∈[0,T ] |ψt |2] < ∞.
Now, let ξ ∈ L2(Ω,FT ,P ) be a terminal value, g : Ω × [0, T ] × Rd → R be the generator, such that the process

g(ω, t, z)t∈[0,T ] ∈H2
1 for any z ∈ Rd . A solution of a BSDE is a pair of processes (yt , zt )t∈[0,T ] ∈ S2 ×H2

d satisfying
BSDE (2).

We now introduce a useful lemma which plays an important role in this Note. First we define

f
n
(t, z) � inf

u∈Qd

{
f (t, u) + n|z − u|} and f̄n(t, z) � sup

u∈Qd

{
f (t, u) − n|z − u|},

where f satisfies (H1) and n ∈ N. Also we define C = max{A,B}. Then one has:

Lemma 2. Let f satisfy (H1) and f̄n, f n
be defined as above. Then for n > C:

(i) −C(|z| + 1) � f
n
(t, z) � f (t, z) � f̄n(t, z) � C(|z| + 1) P-a.s. for any (t, z) ∈ [0, T ] × Rd ;

(ii) f ·(t, z) is non-decreasing and f̄·(t, z) is non-increasing for any (t, z) ∈ [0, T ] × Rd ;

(iii) |f̄n(t, z1)− f̄n(t, z2)| � n|z1 − z2| and |f
n
(t, z1)−f

n
(t, z2)

∣∣ � n|z1 − z2| P-a.s. for any t ∈ [0, T ], z1, z2 ∈ Rd ;

(iv) If zn → z as n → ∞, then f
n
(t, zn) → f (t, z) and f̄n(t, z

n) → f (t, z) P-a.s. as n → ∞;

(v) 0 � f (t, z) − f
n
(t, z) � φ( 2C

n−C
) and 0 � f̄n(t, z) − f (t, z) � φ( 2C

n−C
) P-a.s. for any (t, z) ∈ [0, T ] × Rd .

Proof. It is not hard to check (i)–(iv) (see [5]).
We now prove (v). It follows from (H1) that, for given (t, z) ∈ [0, T ] × Rd , one has:

f (t, u) � f (t, z) − φ
(|z − u|) � f (t, z) − A

(|z − u| + 1
)
� f (t, z) − C

(|z − u| + 1
)
, for any u ∈ Rd . (3)

Given n > C, we define

Λn �
{
u ∈ Qd : n|z − u| � C

(|z − u| + 2
)}

.

Clearly, Λn is not empty and Qd = Λn ∪ Λc
n where Λc

n = {u ∈ Qd : n|z − u| < C(|z − u| + 2)} is the complementary
set of Λn (which is not empty too). For any u ∈ Λn, it follows from (3) that

f (t, u) + n|z − u| � f (t, u) + C
(|z − u| + 2

)
� f (t, z) + C.

Then by (i) of this lemma, one has:

f (t, u) + n|z − u| > f (t, z) + C

2
> f (t, z) � inf

v∈Λn∪Λc
n

{
f (t, v) + n|z − v|}, for any u ∈ Λn.

Therefore,

f
n
(t, z) = inf

u∈Λn∪Λc
n

{
f (t, u) + n|z − u|} = inf

u∈Λc
n

{
f (t, u) + n|z − u|}

= inf
{
f (t, u) + n|z − u|: u ∈ Qd and n|z − u| < C

(|z − u| + 2
)}

by the definition of Λc
n

� inf
{
f (t, u): u ∈ Qd and n|z − u| < C

(|z − u| + 2
)}

� inf

{
f (t, z) − φ

(|z − u|): u ∈ Qd and |z − u| � 2C

n − C

}
by the first inequality of (3)

= f (t, z) − φ

(
2C

)
.

n − C
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By analogy, we can prove the second part of (vi). The proof is complete. �
Remark 3. If f satisfies (H1), then 0 � f̄n(t, z)− f

n
(t, z) � 2φ( 2C

n−C
) P -a.s. for any (t, z) ∈ [0, T ]× Rd and n > C.

3. Main theorem

To begin with, we introduce two sequences of BSDE as follows:

yn

t
= ξ +

T∫
t

g
n
(s, zn

s
)ds −

T∫
t

zn
s

dWs (4)

and

ȳn
t = ξ +

T∫
t

ḡn(s, z̄
n
s )ds −

T∫
t

z̄n
s dWs. (5)

Clearly, for any given n > C, both (4) and (5) have unique adapted solutions, for which we denote them by
(yn

t
, zn

t
)t∈[0,T ] and (ȳn

t , z̄n
t )t∈[0,T ] respectively. Moreover we denote the maximal solution and the minimal one of

(2) respectively by (ȳt , z̄t )t∈[0,T ] and (y
t
, z

t
)t∈[0,T ], and any given solution of (2) by (yt , zt )t∈[0,T ]. We now have the

following lemma.

Lemma 4. Let g satisfy (H1) and ξ ∈ L2(Ω,FT ,P ). Then one has,

(i) ȳn
t � ȳn+1

t � ȳt � yt � y
t
� yn+1

t
� yn

t
, P-a.s. for t ∈ [0, T ] and n > C. Moreover, E[|ȳn

t − ȳt |2] + E[∫ T

0 |z̄n
t −

z̄t |2 dt] → 0 and E[|yn
t
− y

t
|2] + E[∫ T

0 |zn
t
− z

t
|2 dt] → 0 as n → ∞;

(ii) In addition, there exists some positive constant M0 depending only on C, T and ξ , such that E[|ȳn
t |2] � M0,

E[∫ T

0 |z̄n
t |2 dt] � M0; and E[|yn

t
|2] � M0, E[∫ T

0 |zn
t
|2 dt] � M0 for any n > C;

(iii) For any n > C, E[|ȳn
t − yn

t
|] � 2φ( 2C

n−C
)T .

Proof. The proofs of (i) and (ii) can be found in [5]. We now prove (iii). Here we always assume n > C. By (4)
and (5),

ȳn
t − yn

t
=

T∫
t

(
ḡn(s, z̄

n
s ) − g

n
(s, zn

s
)
)

ds −
T∫

t

(z̄n
s − zn

s
)dWs, t ∈ [0, T ]. (6)

Note that

ḡn(s, z̄
n
s ) − g

n
(s, zn

s
) = g

n
(s, z̄n

s ) − g
n
(s, zn

s
) + ḡn(s, z̄

n
s ) − g

n
(s, z̄n

s ) = g
n
(s, z̄n

s ) − g
n
(s, zn

s
) + ĝn

t ,

where ĝn
t := ḡn(s, z̄

n
s ) − g

n
(s, z̄n

s ). It follows from (v) of Lemma 2 that 0 � ĝn
t � 2φ( 2C

n−C
) P -a.s. for t ∈ [0, T ].

We set ŷn
t � ȳn

t − yn
t
, ẑn

t � z̄n
t − zn

t
, and denote by z̄

n,i
t , z

n,i
t the components of z̄n

t and zn
t

respectively. Define

z
n,0
t � z̄n

t and z
n,i
t � (z

n,1
t , . . . , z

n,i
t , z̄

n,i+1
t , . . . , z̄

n,d
t ) and

b
n,i
t � 1{z̄n,i

t �=z
n,i
t }

g
n
(t, z

n,i−1
t ) − g

n
(t, z

n,i
t )

z̄
n,i
t − z

n,i
t

,

for 1 � i � d where 1 is the indicator function. Eq. (6) can rewritten as

ŷn
t =

T∫
(bn

s ẑn
s + ĝn

s )ds −
T∫

ẑn
s dWs,
t t
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for t ∈ [0, T ] where bn
s := (b

n,1
s , . . . , b

n,d
s ) (i = 1, . . . , d).

We now set qn
t := exp[∫ t

0 bn
s dWs − 1

2

∫ t

0 |bn
s |2 ds]. Since g

n
satisfies a Lipschitz condition, |bn

s | � n for any given n.
Applying Itô formula to qn

t ŷn
t on [t, T ] and then taking conditional expectation yields:

ŷn
t = (qn

t )−1E

[ T∫
t

qn
s ĝn

s ds|Ft

]
= E

[ T∫
t

exp

( s∫
t

bn
r dWr − 1

2

s∫
t

|bn
r |2 dr

)
ĝn

s ds|Ft

]
.

It follows from the property of exponential martingale that, for s � t ,

E

[
exp

( s∫
t

bn
r dWr − 1

2

s∫
t

|bn
r |2 dr

)]
= 1.

Therefore,

E[ŷn
t ] = E

[
E

[ T∫
t

exp

( s∫
t

bn
r dWr − 1

2

s∫
t

|bn
r |2 dr

)
ĝn

s ds|Ft

]]

= E

[ T∫
t

exp

( s∫
t

bn
r dWr − 1

2

s∫
t

|bn
r |2 dr

)
ĝn

s ds

]

� 2φ

(
2C

n − C

)
E

[ T∫
t

exp

( s∫
t

bn
r dWr − 1

2

s∫
t

|bn
r |2 dr

)
ds

]
� 2φ

(
2C

n − C

)
T .

The proof is complete. �
The following result is our main theorem:

Theorem 5. Let g satisfy (H1) and ξ ∈ L2(Ω,FT ,P ). Then the solution of (2) is unique.

Proof. From Lemma 4(iii), it follows that E[|ȳn
t − yn

t
|] → 0 as n → ∞ for t ∈ [0, T ]. Therefore

E
[|ȳt − y

t
|] � E

[|ȳt − ȳn
t |] + E

[|ȳn
t − yn

t
|] + E

[|yn

t
− y

t
|] → 0,

as n → ∞ for t ∈ [0, T ]. The proof is complete. �
Remark 6. In the case when g depends on y and is uniformly continuous condition in y, the uniqueness of solution
does not hold in general. For example, let us consider the following equation:

yt =
1∫

t

√|ys |ds −
1∫

t

zs dWs for t ∈ [0,1].

Clearly, g(y) = √|y| is uniformly continuous. It is not hard to check that for each c ∈ [0,1],

(yt , zt )t∈[0,1] =
([

max

(
0,

c − t

2

)]2

,0

)
t∈[0,1]

,

is a solution of the above BSDE.
Certainly, if g is Lipschitz continuous with respect to y or satisfies some kind of monotonic condition just like used

in [6], the result in Theorem 6 also holds true, this point is not difficult to be found in the proofs of Theorem 6 and
Lemma 4.
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Remark 7. It is worth noting that there is an important difference between the BSDE satisfying standard condition
and the BSDE discussed in this note: although we still have the associated comparison theorem for this kind of
BSDEs, the associated strict comparison theorem – see [2, (ii) of Proposition 2.1] – (which says, if ξ1 � ξ2 P-a.s.
and P(ξ1 > ξ2) > 0, then y

ξ1
0 > y

ξ2
0 where (y

ξi
t , z

ξi
t )t∈[0,T ] denotes the solution of (g,T , ξi), i = 1,2) does not hold in

general.
For example, let us consider a BSDE as follows:

yX
t = X +

T∫
t

3

2
|zX

s |2/3 −
T∫

t

zX
s dWs,

where W is a one-dimensional Brownian motion, g = 3
2 |z|2/3. It is not hard to check that for each constant c ∈ R,

(yt , zt )t∈[0,T ] =
(

c − 1

4
W 4

t ,−W 3
t

)
t∈[0,T ]

is the solution of (g,T , c − 1
4W 4

T ), hence y
c− 1

4 W 4
T

0 = yc
0 = c. But c � c − 1

4W 4
T P-a.s. and P(c > c − 1

4W 4
T ) > 0. In

economics, this means that there exist infinitely many opportunities of arbitrage.
More detailed discussions about this phenomenon and the corresponding PDE problem will appear in another

paper.
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