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Abstract

We derive a residual a posteriori error estimator for the algebraic orthogonal subscales stabilization of convective dispersive
transport equation. The estimator yields upper bound on the error which is global and lower bound that is local. Numerical studies
show the behaviour of the error indicator and how it is robust to deal with singularities. To cite this article: B. Achchab et al., C. R.
Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Adaptation de maillage pour l’équation de convection dispersion stabilisée par la méthode algébrique de sous-mailles
orthogonales. On développe un estimateur d’erreur a posteriori pour l’équation de convection dispersion stabilisée par la méthode
algébrique de sous-mailles orthogonales. On obtient une majoration et une minoration de l’erreur. Les résultats numériques montre
l’efficacité de l’indicateur d’erreur dans les régions des singularités où la solution présente des couches limites. Pour citer cet
article : B. Achchab et al., C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and model description

Miscible displacement of a solute in soil solutions is simulated by convection dispersion equation (CDE). The main
difficulties when simulating numerically this process is the convective-dominated transport in porous media. Classical
numerical methods either lack stability, resulting in non-physical instabilities, or accuracy, when excessive numerical
diffusion is produced. Stabilized finite element methods [3,4,7–9,11] are particularly interesting for those cases. In
this work we employ the algebraic orthogonal subscales (AOSS) method plus adaptive mesh refinement to solve in a
domain Ω ∈ R2, with a Lipschitz-continuous boundary ∂Ω , the following concentration equation:
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∇ · (νc − D∇c) = γ − μc in Ω, (1)

c = 0 on ∂Ω = Γ, (2)

where c = c(x, y) is the concentration at location (x, y); D = αL|ν| is the dispersion coefficient; αL is the longitudinal
dispersivity; ν = q/θ is the pore water velocity; θ is the volumetric water content; q is flux density of soil water (or
the Darcy velocity) and γ is the production rate. We suppose that the pore water velocity ν is solenoidal.

We define the operator Lc = ∇ · (νc − D∇c) + μc. The weak form of the problem is to seek c ∈ H 1
0 (Ω), such that

a(c,w) = l(w) ∀w ∈ H 1
0 (Ω), (3)

where a(c,w) = D(∇c,∇w) + (ν · ∇c + μc,w) and l(w) = (γ,w).

2. Algebraic orthogonal subscales stabilization

Let Vh,0 ⊂ H 1
0 (Ω), be a conforming finite element space of piecewise polynomials. The standard Galerkin approx-

imation of (3) is to find ch ∈ Vh, such that

a(ch,wh) = l(wh) ∀wh ∈ Vh,0. (4)

The standard Galerkin method lacks stability for near-hyperbolic problem, as shown in Fig. 1.
The key idea of the multiscale formulation [9] is to consider V0 = H 1

0 (Ω) as the direct sum of two spaces

V0 = Vh,0 ⊕ Ṽ , (5)

where Vh,0 is the space of resolved scales and Ṽ is the space of subgrid scales. We can now split the problem (4):

a(ch + c̃,wh) = l(wh) ∀wh ∈ Vh,0, (6)

a(ch + c̃, w̃) = l(w̃) ∀w̃ ∈ Ṽ . (7)

The subscales are modeled analytically using an algebraic orthogonal subscales (AOSS) approximation [7], c̃ = τ Rch,
where τ = (4 D

h2 + 2 |ν|
h

+ μ)−1 is called the relaxation time and Rch := γ − Lch is the grid scale residual. After
integration by parts on each element, the equation for the grid scales reads:

a(ch,wh) +
∑
T ∈Th

(
c̃, L∗wh

) = l(wh) ∀wh ∈ Vh,0, (8)

where L∗ is the adjoint of L. The final equation for the resolved scales includes the usual Galerkin terms and some
additional volume integrals evaluated element by element. Since the subscales c̃ are proportional to the grid scale
residual, the method is residual-based and therefore, automatically consistent.

3. Adaptive strategy

For a subset S ⊂ Ω , let ‖ · ‖0,S to be the usual L2 norm. The purpose of this Note is to get local lower and global
upper bounds for the error measured in the energy norm:

‖v‖2
S = D‖∇v‖2

0,S + ‖v‖2
0,S .

Let Th be a triangulation of Ω and Eh denote the set of all (n − 1)-faces in Th. This set can be split into Eh =
Eh,Ω ∪ Eh,D, where Eh,Ω and Eh,D refer to interior faces and Dirichlet boundary faces, respectively. For all E ∈ Eh,Ω

and for all φ piecewise smooth, [φ]E denotes the jump of φ across E (the sign of this quantity is irrelevant in the

sequel). For all S ∈ Th ∪ Eh, let αS = min{hSD− 1
2 ,1}, where hS denotes the diameter of S. Denote by γh, νh, and μh

the L2-projection of the data γ , ν, and μ onto the space of piecewise constant functions on Th. Define the elementwise
residual estimators as

η2
T = α2

T ‖rT ‖2
0,T +

∑
D− 1

2 αE‖rE‖2
0,E, (9)
E∈Eh; E⊂∂T
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where

rT = γh + D
ch − νh · ∇ch − μhch, and rE =
{ [D∂nch]E if E ∈ Eh,Ω,

0 if E ∈ Eh,D.
(10)

Finally, define the elementwise data oscillation estimator as

Θ2
T = α2

T

∥∥(γ − γh) + (ν − νh) · ∇ch + (μ − μh)ch

∥∥2
0,T

.

For T ∈ Th, let ωT = ⋃{T ′ ∈ Th|T ∩ T
′ 
= ∅} and set Θ2

ωT
= ∑

T ′∈ωT
Θ2

T ′ .
We proceed with the same strategy as in our work for the subgrid viscosity stabilization [1] using the estimates of

the Clément operator [6] and the techniques of bubble functions [12] we obtain the following results:

Theorem 1. Let c and ch be the unique solutions of (3) and (8) respectively. Then

‖c − ch‖2
Ω �

∑
T ∈Th

[
η2

T + Θ2
T

]
, (11)

and for all T ∈ Th,

ηT � (
1 + ε−1/2αT

)‖c − ch‖ωT
+ ΘωT

. (12)

Algorithm (Maximum strategy). For the mesh refinement we use criterion of the maximum strategy.

I. Given an initial mesh Th that is quasi-uniform [5], we compute the indicator ηT for each T ∈ Th.
II. Put η = maxT ∈Th

.
III. Then a subset Sh of marked elements should be refined if ηT � δη for each T ∈ Sh, where δ is a threshold

(0 < δ < 1). Here we choose δ = 0.25.

4. Numerical studies and concluding remarks

Under simplifying assumptions, we solve the problem (using FreeFem software [2] and Xd3d [10]) with parameters
ν = (1,1)T ,D = 10−4,μ = 1 and we take γ such that the exact solution is:

c(x, y) = xy(1 − x)(1 − y)
[
1 + tanh

(
100

(
x2 + y2 − 0.25

))]
.

Fig. 1. From left to right: two views of exact solution, its standard Galerkin approximation and the corresponding AOSS stabilization.

Fig. 2. Successive mesh refinements and corresponding solution.
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In Fig. 1 it is observed that standard Galerkin finite element produces a globally oscillatory solution, while the solution
obtained by the (AOSS) method is non-oscillatory except in the vicinity of interior layers. Owing to the local error
indicator ηT and using the above adaptive algorithm criterion; the estimators capture the remaining oscillations. In
Fig. 2, adaptive meshes and the corresponding solution are presented.

Especially the estimators can be used to construct adaptive meshes and then to deal with singularities in the bound-
ary or interior layers.
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