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Abstract. Andesitic volcanic hydrosystems in Indonesia are mostly hydrogeologically unknown de-
spite their socio-economic importance. The development of robust and easy-to-implement method-
ologies to conceptualize and quantify the water cycle components becomes a prerequisite for their
sustainable management.

We developed a lumped hydrological model to mimic the structure and functioning of a previ-
ously unknown hydrosystem located on the flanks of the Salak volcano (West Java). The structure of the
aquifers was revealed with electrical resistivity tomography. The distinction between springs fed by the
extensive artesian aquifer and others fed by shallow perched aquifers was obtained mostly using hy-
drochemistry. The elevation of the recharge area was identified using isotopic analysis of spring water.

After designing the hydrological model structure, we carried out a probabilistic parameters explo-
ration using the multiple-try differential evolution adaptive Metropolis algorithm to calibrate aquifer
discharge. Multiple Markov chains allow a better exploration of the parameter values. The Bayesian
approach provides the best water cycle simulation with a parameter uncertainty analysis, improving
the accuracy and representation of the water cycle appropriate for previously unknown hydrosystems.

Keywords. Groundwater, Groundwater management, Multidisciplinary approach, Lumped model,
Probabilistic, Andesitic setting.

Published online: 26 January 2023

1. Introduction

Freshwater is an indispensable component of
ecosystems and human activities’ essential needs.
The sustainability of human societies depends on
the constant supply of clean fresh water. Currently,
only 10% of the Earth’s renewable freshwater is used
by humans, while the other 90% sustains natural
ecosystems and biodiversity [de Marsily, 2020]. To
improve the human management of renewable wa-
ter and sustain societal development, we need to
increase our understanding of water interaction with
the other components of the water cycle. Neverthe-
less, the consideration of water fluxes in all natural
compartments is hampered by the availability of
relevant data and/or conceptual models. This prob-
lem is all the more important in countries where
observation networks of the water cycle have only
recently been developed, and often sparsely. In such
conditions, the first challenge is to accurately mon-
itor and quantify the water fluxes from the atmo-
sphere to the subsurface. While the dichotomy of
the water cycle between the water reservoirs may be
difficult to grasp in complex geological settings, our
study presents a methodology combining multidis-
ciplinary field measurements and probabilistic sim-
ulations to (i) quantify the water cycle within the dif-
ferent compartments of a previously unknown wa-
tershed, and (ii) define field monitoring needs to in-
crease the accuracy of the water cycle representation.

Our study focuses on a watershed located along
the flank of Mount Salak, an andesitic volcano at the
western part of Java island, Indonesia (Figure 1A).
In this tropical region, the humid tropical climate

generates significant rainfall (from 2 to 5 m per year)
year-round accompanied by high evapotranspiration
(from 1 to 1.4 m per year). Java Island climate is highly
impacted by Asian and Australian monsoon leading
to intense rainfall during the wet season [from No-
vember to March; Aldrian and Djamil, 2008]. Con-
versely, the dry season is characterized by low rain-
fall inducing notably a decrease in surface water
and spring discharge. Population growth and urban
sprawl lead to a constant increase in anthropogenic
pressure on water resources. Upstream, surface wa-
ter is largely used for the irrigation of rice fields
[Khasanah et al., 2021]. Downstream, industrial and
urban wastewater discharges to the rivers have led to
a degradation of surface water quality [Buwono et al.,
2021, Suriadikusumah et al., 2021]. This expansion
of human activities has led to a significant increase
in anthropogenic pressure on groundwater resources
throughout the watersheds [Khasanah et al., 2021].
This situation could lead to water supply shortages
during the dry season and degradation of groundwa-
ter quality.

In this context, it becomes crucial to understand
the distribution of renewable water flows through
the different compartments of the watershed. How-
ever, such quantification is hampered by the het-
erogeneity of the subsurface, which is composed of
volcanic rocks and/or detrital formations that host
spatially variable heterogeneous aquifers [Lachas-
sagne et al., 2014, Selles et al., 2015]. The sum-
mit of the volcanoes, characterized by steep slopes
above 20° and up to 40°, is usually mainly com-
posed of andesitic lava flows and pyroclastic projec-
tions. At the foot of these steep slopes, lava flows
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Figure 1. (A) Location map of the study area in Indonesia. (B) Map of the investigated surface watershed
(delineated in white) with location of surveyed groundwater springs (solid circles), and of the twelve
numbered ERT profiles. The springs are colored as a function of the water electrical conductivity and
labeled with spring discharge (in L/s).
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transition to alternations of detrital and distal ash
fallout layers that form peripheral detrital aprons.
Lower down, the aprons become alluvial floodplains,
with alternating laharic formations and fine-grained
soils, which can prevent the upwelling of underly-
ing groundwater, creating artesian aquifers [Toulier
et al., 2022]. This layering of geological formations re-
lated to the distribution of volcanic formations spa-
tially disconnects the surface watersheds from un-
derground ones [Charlier et al., 2011, Dumont et al.,
2021, Vittecoq et al., 2014]. At the same time, ge-
ological discontinuities along slopes may allow the
release of groundwater at spatially-restricted emer-
gence points, which may substantially contribute to
surface water flows [Vittecoq et al., 2019]. These an-
desitic hydrosystems are complex due to their lat-
eral and vertical heterogeneity and are poorly or not
instrumented.

Hydrogeological models are useful tools to better
assess water fluxes between the compartments of the
water cycle. The existing modelling strategies cover
a large spectrum organized along a two-dimensional
continuum according to spatial resolutions and pro-
cess complexities [Hrachowitz and Clark, 2017], from
lumped, conceptual models to process-based mod-
els describing the system from a microscale perspec-
tive. Both approaches were applied in andesitic set-
tings. Lumped or semi-distributed holistic reservoir
models were developed to accurately capture water
exchanges between the atmosphere, the soil, runoff
and the subsurface [Cerbelaud et al., 2022, Charlier
et al., 2008, Gómez-Delgado et al., 2011, Mottes et al.,
2015]. Generally calibrated on river flows, they sim-
plify the complexity of the aquifers that is induced by
the andesitic volcano structure. Process-based mod-
els solving Richards’ equation and Darcy’s law have
also been developed to represent physical processes
[Chang et al., 2020, He et al., 2008, Lo et al., 2021, Sa-
tapona et al., 2018]. In this case, the finite element
mesh is constructed by incorporating geological and
hydrogeological features to simulate the water table
with a calibration on monitored boreholes. Never-
theless, the surface/underground exchanges are sig-
nificantly simplified limiting the representativeness
of the aquifers in the watershed water cycle. Both
approaches rely heavily on data, either to calibrate
model parameters or to prescribe the geometry and
hydrodynamic properties of geological and hydroge-
ological features. To calibrate and/or to validate the

models, continuous river discharge or piezometric
data are required over long record periods to repre-
sent annual and interannual variability. This tradi-
tional calibration framework does not allow for the
integration of non-continuous data or expert knowl-
edge that could improve the performance of the sim-
ulations [Gharari et al., 2014].

To model andesitic hydrosystems, we argue that
representing the surface/underground exchanges is
mandatory while at the same time keeping the repre-
sentativeness of the aquifers consistent with the het-
erogeneity of the environment. In addition, the man-
agement of weakly instrumented watersheds would
benefit from the development of an iterative ap-
proach between field measurements and/or moni-
toring and modelling approach to incrementally im-
prove water cycle quantification. Such an approach
may provide early-stage estimations of water fluxes
and highlight which data are missing for more accu-
rate estimation. The development of such water cycle
simulation is strongly needed in order to sustainably
manage water resources and to quantify the impact
of climate on water availability.

To achieve this, our study develops a methodol-
ogy to structure the progressive characterization of
a minimally instrumented hydrosystem. The objec-
tive is to obtain a first simulation usable for water
use management while guiding future surveys and
monitoring. This approach was designed for a previ-
ously hydrogeologically unknown mountainous wa-
tershed in West Java (Figure 1A). Located on the vol-
cano chain crossing the island, this mountainous
area is strategic for a wide variety of water use, such
as for population supply, irrigation, and industry.
However, these hydrosystems are considered hydro-
geologically unknown because their geological struc-
tures, extensions and dynamics have not yet been de-
termined, which is necessary to improve their man-
agement. The only hydrological data available in the
watershed is the discharge of the artesian springs
used to supply the local population and/or indus-
trial uses. Consequently, a better understanding of
the hydrosystems and their functioning is necessary
to define sustainable water management. Our study
is divided into three steps: (i) hydrosystem charac-
terization through a multidisciplinary study to set up
a conceptual model; (ii) the transformation of the
conceptual model into a numerical one; and (iii) the
calibration of this latter using field data.
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2. Material and method

2.1. Methodological approach

To set up the conceptual model, we need to de-
fine the structure, characterize the compartiments
of the water cycle and estimate their behaviors to
construct a meaningful model. First, the volcanic
structure and aquifer(s)/impervious bodie(s) geome-
tries have to be determined. For decades, geophys-
ical methods demonstrated their strength to image
volcanic structures and identify aquifer geometries
[Descloitres et al., 1997, Dumont et al., 2019, Gresse
et al., 2021, Vittecoq et al., 2019]. We thus imaged
the hydrogeological structure of the watershed us-
ing 2D electrical resistivity tomography (ERT) com-
bined with a geological review of surface outcrops
and of artesian borehole lithological data. Second,
the different aquifers need to be identified and char-
acterized between shallow, perched, and deep reser-
voirs [Join et al., 2016]. Geochemistry has proven its
efficiency in identifying the recharge areas and the
main characteristics of the aquifer [Bénard et al.,
2019, Join et al., 2016, Toulier et al., 2019]. To do so,
we used geochemical analyses and discharge mea-
surements to identify both perched and deep arte-
sian aquifers. This further allowed defining the ex-
tent of each identified aquifer type. In addition, the
elevation of aquifer recharge was assessed using wa-
ter stable isotope of rainfall within the watershed and
deep artesian aquifers. Lastly, hydrological monitor-
ing of river or spring discharges are an important data
to compute water balance between the different wa-
ter reservoirs of the watershed [Charlier et al., 2011,
Vittecoq et al., 2019]. To overcome the lack of such
dataset, a rough surface water balance was obtained
from point measurements of river flow, which are
used to estimate surface water/groundwater flows.

As the model relies on limited information while
integrating the whole water cycle, we used a lumped
model. The production function adopts the equa-
tions of Thornthwaite [1948], while the model
storage discharge equation is derived from Perrin
et al. [2003]. We applied a Bayesian approach, the
multiple-try differential evolution adaptive Metrop-
olis (MT-DREAMZS) to account for the uncertainty in
model parameters calibration [Laloy et al., 2015]. The
starting probability distribution of the parameters
is set as uniform within a threshold estimated from
field measurements. Multiple runs of Markov chains

then allow transforming the a priori distribution
functions into a posteriori probability distribution
functions [de Marsily et al., 1999]. This probabilistic
exploration of the model parameters space, framed
by field interpretations, allows (i) to improve the
representability of the water cycle simulation, and
(ii) to guide future field characterization by estimat-
ing the influence of each parameter on the simula-
tion uncertainty. Thus future field surveys or instru-
mentation can be optimized using the simulation
guidelines.

2.2. Study area

The study site is located on the southern flanks of
the Salak volcano, which culminates at 2900 m a.s.l.
(Figure 1). This volcano is part of the mountain belt
that stretches along the center of the island of Java
from west to east. The study area straddles the sur-
face drainage limit between the northern and south-
ern sides of the island. Water resources of the water-
shed supply local populations as well as agricultural
and industrial activities. While the main agricultural
use consists of irrigating rice fields by river diversion,
other activities are supplied by spring captation or
pumping into wells. It is therefore essential to char-
acterize renewable water volumes between the dif-
ferent components of this hydrosystem to maintain
a base flow sufficient to sustain local biodiversity and
local communities.

2.3. Field measurements

2.3.1. Geomorphology

The geological description of the Salak volcano is
still limited. Therefore, we applied a geomorpholog-
ical analysis to define its main geological units. In
particular, slopes and land roughness allow to distin-
guish areas underlained by lava flows from those un-
derlained by detrital deposits, as described by Selles
et al. [2015]. Surface topography characterization
was performed on a digital elevation model (DEM)
calculated from the Advanced Land Observing Satel-
lite dataset [ALOS—Tadono et al., 2014]. With a res-
olution of 5 m, the ALOS DEM provides an accurate
depiction of the slopes morphology of Salak vol-
cano. The DEM geodesic reference is EPSG 32748—
WGS 84/UTM zone 48S. The DEM was used to ex-
tract slope maps and delineate surface watersheds
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using the QGIS software (v3.10.11—https://www.
qgis.org/). A pit-filling algorithm (r.fill.dir from the
GRASS v7.8.4 package) was used to remove local
depressions and other artifacts. The filled DEM was
then used to define the watersheds and the hydro-
graphic network using the “r.watershed” function
from the GRASS v7.8.4 package. The slope map was
calculated using the slope function of the GDAL
v3.1.4 package.

2.3.2. Geophysics

To confirm the geomorphological classification of
land surfaces into geological units and to provide
some insights on the underlying geology, geophysi-
cal and geological campaigns were conducted dur-
ing two field surveys. The first, conducted in De-
cember 2020, focused initially on the immediate sur-
roundings of the artesian springs (Figure 1), before
proceeding upstream in order to explore the arte-
sian structure extension. Artesian spring water is col-
lected into shallow boreholes, which logging data
provide deep geological information. This initial sur-
vey was meant to understand the geological parame-
ters controlling the location of the artesian springs,
and to collect the geological information at depth
needed to assist geophysical imaging interpretations.
A second survey was conducted in June 2021 in order
to complete geophysical imaging, such as to obtain
a nearly continuous longitudinal geophysical section
from the artesian springs area up to the break-in-
slope marking the transition from the core of the vol-
cano to the surrounding detrital accumulation zone.

During these two surveys, a total of 12 ERT profiles
were acquired using an IRIS Instruments Syscal Pro
resistivity meter (http://www.iris-instruments.com/
syscal-pro.html). All 2D lines were acquired using 64
electrodes with a 10 m spacing and some roll-along
specified in Table 1. Acquisition sequences were de-
fined with Wenner–Schlumberger set up, which pro-
vides the best trade-off between shallow resolution
and depth of investigation [Dahlin and Zhou, 2004].
Each measurement was stacked 3 to 6 times with im-
posed electrical potential of 800 mV. The measure-
ment time window was 500 ms.

After field acquisition, ERT and roll-along data
were merged and processed using Prosys III soft-
ware (v1.05, https://www.iris-instruments.com/fr/
download.html#processing). In order to delete gap-
fillers measurements, as well as measurements with

negative apparent resistivity, low intensity and/or
low electrical potential data were filtered out. Finally,
data with poor standard deviation (above 10%) and
insufficient stacking were also removed.

Data were then inverted using l1 norm in Res2dinv
software version 3.59.121. The result is presented af-
ter 3 iterations. Similar parameters were used to in-
vert all ERT profiles. The width of model grid cells was
set to half the electrode spacing. The thickness of the
top layer corresponds to 120% of the cell width, and
the layer thickness increases by a factor of 1%. The
depth of the model is defined with a vertical exten-
sion of 5%. The damping factors used are: (i) 0.15 for
the initial, (ii) 0.02 for the minimum, and (iii) 5 for the
top layer. The flatness ratio is set at 1 to ensure the
imaging of both vertical and horizontal structures.
Finally, the depth of investigation is estimated us-
ing a sensitivity estimation of the inverted resistiv-
ity model [Marescot et al., 2003, Oldenburg and Li,
1999]. This approach uses two inversions with differ-
ent initial models and calculates the difference be-
tween the two inverted results. Here, we considered
that if that difference exceeds 10%, the inverted re-
sistivity model is not valid. Inversions yielding differ-
ences between 5 and 10% are regarded as poorly reli-
able but still informative.

2D-inverted resistivity profiles were ground-
proofed near the artesian springs using available
geological logs defined with the drilling cores. They
allowed us to identify the geological formations cor-
responding to the imaged geoelectrical layers. The
ERT profiles obtained during the second survey al-
low us extending these interpretations up the slope,
combined with surface geological observations.

2.3.3. Hydrology and geochemistry

The study site is located in Java Island charac-
terized by a tropical climate. The year is divided in
two seasons: the wet season characterized by strong
moonson rainfall (October–March); the dry season
with less or no rainfall at all [April–September; Du-
mont et al., 2022]. The annual rainfall varies from 2 to
5 m/year, while the daily average temperature ranges
from 18 to 25 °C.

Alongside the geophysical surveys, springs were
inventoried. Their discharges and physico-chemical
properties were measured in the field and water
samples were taken for further analyses, in particu-
lar laboratory measurements of major elements and

https://www.qgis.org/
https://www.qgis.org/
http://www.iris-instruments.com/syscal-pro.html
http://www.iris-instruments.com/syscal-pro.html
https://www.iris-instruments.com/fr/download.html#processing
https://www.iris-instruments.com/fr/download.html#processing
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Table 1. Summary of ERT acquisition parameters, which provides for each of the 12 profiles the total
length, number of electrodes and the roll-along. No roll-along was implemented along profiles #8, #11
and #12. However, profile #8 is composed of two profiles with an overlap of 310 m, whereas profiles #11
and #12 do not overlap. The two processing columns present the number of data obtained after (without
gap-fillers) and before processing, with indication of the percentage of data retained for the inversion.
The last column summarizes the absolute error of the inverted model for each profiles. All the profiles are
located in Figure 1

ERT profile Length (m) Electrodes Roll-along After
processing

Before
processing

Absolute
error (%)

#1 630 64 — 1100 966 (88%) 6.20

#2 630 64 — 1100 1023 (93%) 10.45

#3 630 64 — 1010 821 (81%) 8.99

#4 950 64 32 1944 1592 (82%) 6.68

#5 950 64 32 1920 1720 (90%) 8.25

#6 950 64 32 1944 1716 (88%) 9.72

#7 950 64 32 1944 1698 (87%) 15.09

#8 950 2×64 — 2200 1700 (77%) 14.36

#9 950 64 32 1920 1749 (91%) 16.75

#10 1190 64 32+24 2520 2434 (97%) 13.25

#11 630×2 2×64 — 2110 2015 (95%) 7.96 & 3.15

#12 630×2 2×64 — 2200 1944 (88%) 4.03 & 4.78

isotopic ratios. Major elements analysis has been
proceded by UnPad ITB laboratory using an ion chro-
matography instrument. The water isotopic ratios
have been estimated by the BATAN laboratory (Na-
tional Nuclear Energy Agency of Indonesia) using a
liquid-water stable isotope analyzer Los Gatos Re-
search DLT-100. Springs were classified according to
discharge, major element composition, and ground-
water electrical conductivity [Bénard et al., 2019,
Charlier et al., 2011, Join et al., 1997, 2016]. Water sta-
ble isotopic ratios were used to define the average
elevation of the recharge area using the local mete-
oric line, which we defined from analysis of weighted
rainfall collected within the watershed as described
in Toulier et al. [2019]. For the watershed, rainfall
was collected at four different elevations during the
hydrological cycle 2006–2007, both the amount of
rainfall and its mean monthly isotopic composition
were measured. To characterize the artesian aquifer
recharge, three campaigns of water sampling for wa-
ter stable isotope analysis were carried out from 2006
to 2007. The variations in water stable isotope ra-
tios over the period allowed us to assess the seasonal
variability of the recharge processes and to obtain

an estimate of the average elevation of the aquifer
recharge. Thus the spread of isotopic results informs
on changes in the dynamics of the recharge from dry
to wet seasons.

Once the hydrogeological structure of the subsur-
face was defined, it was necessary to understand the
distribution of water flow and its dynamics. This step
was hampered by the absence of long-term moni-
toring of river discharges within the surface water-
shed. Besides, artesian aquifers extension is gener-
ally large and disconnected from the surface drainage
network. On the one hand, part of the subsurface
flow could not be quantified with hydrological mon-
itoring. On the other hand, the model must repre-
sent the functioning of the artesian springs and not
the whole system in order to be calibrated on the
available spring discharges. The river flow measure-
ments undertaken during the 2019 dry season and
the 2020 wet season were used as a constraint for sur-
face discharge evaluation in the model. During these
surveys, the discharge was repeatedly measured at
downstream locations whereas the upstream rivers
were measured only during the wet season. The spe-
cific discharge rates (as a function of surface area)
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derived from these site-specific measurements were
used as proxies of the specific runoff of all upstream
sectors (central and proximal) in order to compute
the total runoff. The difference in flow between the
dry and wet seasons provides some preliminary in-
sights on annual variations in the dynamics of the
rivers. Nevertheless, this information is not compre-
hensive enough to be used as input in the models and
was therefore only used to constrain the simulation
results.

Finally, to constrain the water cycle in the sys-
tem, we use the discharge of the artesian springs
tapped for the drinking water supply of the popu-
lation (Figure 2). These springs have been gradually
instrumented since 2015. It is thus possible to have
a partial measurement of the artesian aquifer out-
let. Indeed, these measurements do not integrate all
the artesian springs identified on the field, nor the
underground flows that may not be drained by the
springs. Nevertheless, we summed the discharge of
all the inventoried springs issuing from the artesian
aquifer to obtain one discharge time series of more
than 5 years, from 2015 to mid-2021, that recorded
the seasonal fluctuations of the system. The climate
forcing during this period evolved from one year to
another with notably an ENSO (El-Niño Southern Os-
cillation) event between 2014 and 2016. These data
allow us to understand how the system reacts to vari-
able forcings.

2.4. Water cycle simulation

2.4.1. Lumped model structure

Since the final structure of the hydrological model
depends directly on the characterization of the hy-
drosystems, this section will focus on the descrip-
tion of the equations used. The model was chosen
to run at the daily timestep in order to account for
the strong rainfall events that occur in such a tropical
context.

The production function of the model consists of
a soil production storage (SW ) defined to estimate
the balance between rainfall, evaporation, and veg-
etation transpiration. The Thornthwaite equation is
used to compute the effective rainfall (ER) as:

ER = R −AET + ∆SW

∆t
(1)

where R is rainfall, AET is actual evapotranspiration,
and SW is soil water content (SW 0 ≤ W ≤ SW max),

where SW max represents the soil water holding ca-
pacity and SW 0 is the lower limit of evaporable soil
water. The AET is calculated as follows:

AET n =


PET n for Pn +SW n−1 ≥ PET n

Pn +SW n−1 for PET n −Pn ≥ SW n−1

0 else.

(2)

Where n is the daily timestep and PET is the po-
tential evapotranspiration estimated using the
Penman–Monteith equations [Monteith, 1965],
which explicitly accounts for climatic and vegetation
characteristics:

PET =
0.408×∆(Rn −G)+ ρa∗Cp

ra
∗ (es −ea)

∆+γ∗
(
1+ rs

ra

) (3)

with ∆ the slope of the saturation vapor pressure
curve as a function of the air temperature (kPa·°C−1);
Rn the net radiation (MJ·m−2·day−1); G the soil heat
flux density (MJ·m−2·day−1); ρa the air density; ra

the aerodynamic resistance (s·m−1); rs the stomatal
resistance (s·m−1); es the saturation vapor pressure
at the mean air temperature (kPa); ea the actual vapor
pressure of the air (kPa); γ the psychometric constant
equal to 0.066 kPa·°C−1; Cp the specific heat of the air
(MJ·kg−1·°C−1).

Weather data used for the water cycle simu-
lation come from the Stamet Citeko station of
BMKG network (Badan Meteorologi, Klimatologi,
dan Geofisika—http://www.bmkg.go.id) located at
14 km north of the watershed. While the station is
not within the watershed, the rainfall analysis of Du-
mont et al. [2022] demonstrated the representativ-
ity and accuracy of this weather station monitored
from 2000 to 2021 for the studied area (Figure 2).
For the estimation of potential evapotranspiration,
the Stamet Citeko station is the only station provid-
ing long-term climate data (temperature, radiation,
wind, sun exposure time per day and relative air hu-
midity) without long gaps. However, due to punctual
gaps in the climate data, they have been averaged
over the time series to obtain the climatological po-
tential evapotranspiration for each day of the year
(Figure 2). This long-term climatic time series allows
us to assign a warm-up period to the model from
the beginning of 2000 to the end of 2014, the latter
corresponding to the beginning of spring discharge
measurements. This warm-up period ensures that
the model during the studied period is not impacted
by the choices of model initialization.

http://www.bmkg.go.id
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Figure 2. Daily rainfall (R), potential evapotranspiration (PET) and artesian springs discharge (Q) time
series from 2015 to mid-2021. Note that the higher noise of the data in 2015 and 2017 is a consequence of
the pressure device; the noise is not representative of the real discharge of the spring.

Below the SR reservoir, the ER feeds runoff (RO)
and infiltration. Flux allocation is defined by the
Baseflow Index (BFI) parameter, used to calculate
the infiltration/effective rainfall ratio. Deeper in the
ground, the model structure is not defined at this
stage, as it depends on spatially varying hydrogeo-
logical characteristics. In the model, each reservoir is
characterized by a recharge and by the infiltration or
the discharge from a shallower reservoir. Its discharge
is calculated as a function of the reservoir state using
the GR4J model equations [Perrin et al., 2003]. For a
reservoir level R (mm), the outflow QR thus depends
on its current filling level R and its maximum capac-
ity Rmax (mm):

QR = R

1−
[

1+
(

R

Rmax

)4]− 1
4

 . (4)

2.4.2. Probabilistic parameter exploration

The objective of our methodology is to define the
range of possible values for input model parame-
ters, based on the interpretation of field data. This
will allow a better linkage between the numerical
simulations and field reality while improving the
future characterization of the studied hydrosystems.
For this reason, the parameterization of the artesian
springs flow simulation is based on a probabilistic

approach. To do so, we used the multiple-chains
differential evolution adaptive Metropolis algorithm
[MT-DREAMZS—Laloy et al., 2015] to infer the pos-
terior probability density functions (PDF) of model
parameters. At the start, an a priori probability distri-
bution is defined for each parameter. At each itera-
tion, the MT-DREAMZS algorithm uses a latin hyper-
cube sampling to sample parameter values following
the statistical methodology presented in Laloy et al.
[2015]. Once the parameter values are accepted, the
water cycle simulation is run in order to estimate a
log-likelihood function used to compare simulation
results and measured discharges. The use of multiple
Markov chains allows us improving parameter space
exploration, limiting the impact of local maximum
likelihood on the search for best-fit parameters. In
this study, five Markov chains are used with 50,000
iterations per chain. At each iteration, a candidate
parameter set is tested via the Metropolis ratio. If
it is accepted, the parameter set is validated and
integrated into the calibration process.

3. Results and discussion

This section is divided into three parts. First, the con-
ceptual model of the hydrological system is defined
using field measurements and observations. Second,
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Figure 3. (A) Slopes map of the watershed extracted from the ALOS DEM with the location of the ERT
profiles, (B) the downstream profiles starting from the artesian springs area (#4, #11 and #12—green),
(C) lateral profiles oriented west–east (#5 and #8—red), and (D) upstream profiles (#9 and #10—blue).
The distance along the profiles is presented in m (X axis), as well as the elevation (Y axis). Profiles
not presented here are in orange in the map (A). In the slopes map, three geomorphological zones are
delineated as: core of the volcano (slope > 15°), proximal (slope from 8° to 15°) and distal (slope < 8°)
zones. The three field pictures illustrate the different types of vegetation cover and geological outcrops
encountered in the catchment, with clayey rice fields (P1), laharic deposits of the proximal zone (P2), and
lava formations of the core of the volcano (P3). In the lowest profile, two artesian wells are located with
laharic formations in grey and pyroclastic ones in red. The two nearest springs are located with blue
triangles.

this conceptual model is used as the basis to build
and set up the numerical lumped model which is
used for the probabilistic parameters exploration.
Third, the optimal parameter set is used to simulate
the spring discharge.

3.1. From observations to a conceptual model

To understand the geological structure of the wa-
tershed, our methodology relies on a combination
of geological, geomorphological and geophysical in-
formation (Figure 3). In addition, hydrogeological
knowledge such as the location and properties of
the springs are of prime importance to decipher the
structure of the conceptual model.

3.1.1. Geomorphological and geophysical results

The slopes map allows dividing the watershed into
three zones: the core of the volcano is characterized
by steep slopes (average: 23.9°) and, on the opposite,
the distal zone by lower slopes (average: 5.5°); the in-
termediate proximal zone shows variable slopes be-
tween 5° and 20° (Figures 3A and 4). In the latter, field
geological observations showed that several morpho-
logical forms correspond to lava flow fronts, indicat-
ing that it is the meeting zone between lava flows
tracking from the core of the volcano and the detri-
tal deposits of the distal zone. Downstream of these
massive flows, the valley is particularly eroded with
slopes of up to 12°, which contrasts with the low ero-
sion of the distal area. The outcrop of lava flow may
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Figure 4. 2D conceptual hydrogeological model of the volcano slope. The water flows are represented by
blue arrows. A zoom of the artesian springs area provides information on the artesian aquifer water level
and the overflow process.

have disconnected this area from the upper part of
the watershed, limiting alluvium deposit or mark the
upper limit of regressive erosion coming from down-
stream. This particular feature allows the underlying
formations to outcrop.

The ERT profiles provide an imagery of the struc-
tures at depth (Figure 3B–D). The lowest profile
stretches from the artesian springs zone to the lower
limit of the proximal zone. These profiles were geo-
logically and hydrogeologically calibrated from the
gological data of springs and boreholes located near
the springs area (Figure 3B). Thus, these ERT profiles
reveal a long, from 10 up to 50 m thick, superficial
conductive layer (<60 Ω·m), which extends to about
570 m a.s.l. and thickens over a distance of 2400 m.
This conductive layer corresponds to a clayey laharic
formation identified in the wells. There it consti-
tutes an aquiclude that seals the underlying resistive
(>60 Ω·m) artesian aquifer. The artesian aquifer cor-
responds in the wells to mildly reworked volcanic
breccias, pyroclastic rocks, and sandstones. This
main deep reservoir feeds several high discharge
(>10 L/s) springs observed in the springs area.
Groundwater flows out from the aquifer through

the locally thinner (notably in incised valleys) and/or
locally more permeable laharic formations (Fig-
ure 4). Additional ERT profiles performed imme-
diately downstream the spring area show that the
aquifer is bounded there to the south-east by clayey
conductive formations; this is an important feature
as it surely prevents any groundwater to flow down-
stream the artesian springs. The western and eastern
lateral ERT profiles confirm that both the aquifer and
its confining layer extend laterally West and East.
The deep resistive aquifer layer is less resistive in the
western part, while it deepens towards the eastern
limit. Unfortunately, these lateral limits of the aquifer
were not reached by the current #5 and 8 ERT pro-
files (Figure 3C). However, given the absence of other
known artesian springs laterally (see Figure 7 below),
the aquifer is not expected to extend much farther
than the chosen surface watershed boundaries.

At the transition between the distal and the prox-
imal zones, a few tens of meters in elevation above
the upper limit of the aquifer confining layer, the ERT
profiles reveal a thick resistive layer (80–150 Ω·m)
that reaches the surface on a steep slope (8–15°).
Both the morphology and outcrops confirm a lava
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flow front issuing from the North. From this eleva-
tion, a conductive layer consistent with laharic out-
crops is present in the areas with the shallow slopes
(<8°). At the limit with the core of the volcano, the
conductive layer deepens and becomes thinner (as
seen in #9). This conductive layer is thus comprised
between two resistive bodies (Figure 3D). The prox-
imal zone appears as a transition area between a
reworked-pyroclastics dominant area (downstream)
and a lava-flow dominant area (upstream). There,
groundwater may flow from lava-flow to sandstone
aquifers. There might also be surface–groundwater
interactions, with both springs issuing from aquifers
and, locally, streams infiltrating to aquifers. In the
core of the volcano, only lava flows and breccias de-
posits crop out, which is consistent with alternating
thinner conductive (lahars) and thicker resistive (lava
flows) layers (Figure 3D).

3.1.2. Geochemical and isotopic results

Location and characterization of springs
(discharge, geochemical and isotopic analyses)
combined with hydrological measurements on
streams complete this geological/geomorphological/
geophysical analysis. In the distal zone, there are no
springs outside the spring zone (blue points in Fig-
ure 1). There, artesian springs are characterized by
high discharges (between 10 and 40 L/s) and the
highest measured electrical conductivities (130 to
150 µS/cm—Figure 5A). During the wet season, ad-
ditional artesian springs were identified a little fur-
ther upstream in the field. This highlights that the
artesian aquifer discharge varies according to the
hydraulic head in the aquifer which is controlled by
seasonal recharge. When this latter increases, tem-
porary springs appear at a higher elevation. Several
of these springs only flow during the wet season,
accommodating fluctuations in discharge of the
aquifer throughout the year (Figure 4). Upstream,
in the proximal zone, all springs have a lower dis-
charge rate (≤5 L/s) and lower electrical conductivi-
ties (<120 µS/cm—Figure 5A) which suggests the ex-
istence of only local perched aquifers of small spatial
extent (Figure 4).

Globally, the groundwater electrical conductivity
is well correlated to the discharge of the springs
as well as to the carbonate mass concentration,
which may be related to the contact time between
groundwater and the aquifer rocks (Figure 5A and B).

Figure 5. (A) Spring discharge as a function
of the groundwater (GW) electrical conduc-
tivity; (B) carbonate mass concentration as a
function of the groundwater (GW) electrical
conductivity; and (C) spring discharge as a
function of sodium/chloride ratio (concentra-
tions are transformed in meq/L to estimate this
ratio). The dot colors correspond to ground-
water electrical conductivity clusters defined
in Figure 1. Blue and green dots correspond to
artesian springs.

The sodium/chloride (Na/Cl) ratio, defined by Join
et al. [1997], tends to be well correlated with flow dis-
charge (Figure 5C). Higher ratios (longer water/rock
interactions) are usually reached in the deep arte-
sian aquifer while the shallow aquifers exhibit lower
Na/Cl ratios (Na/Cl < 1.6). The Na/Cl ratios support
previous insights indicating that the proximal springs
are fed by small extention aquifers while the artesian
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springs are supported by an extensive deep one (Fig-
ure 4).

Then, oxygen and hydrogen stable isotope ratios
allowed to estimate the elevation of the recharge
area of the artesian aquifer (Figure 6). The mea-
surement of monthly weigthed rainfall isotopic ra-
tios allow to estimate the water local meteoric line of
Salak volcano (SMWL; δ2Hh = 7.83×δ18O+ 12.35).
This meteoric line is consistent with Toulier et al.
[2019] Bromo–Tenger meteoric line (BMWL; δ2Hh=
7.71 × δ18O + 12.37). As for Toulier et al. [2019], the
SMWL appears above the global and local meteoric
line, GMWL and LMWL respectively, demonstrat-
ing the local topographic effect on rainfall compo-
sition. The oxygen and deuterium ratios measured
in the artesian aquifer have a low range of variation
throughout the sampling periods compared to the
variation observed in other springs and rivers sam-
pled in the same time in the watershed (Figure 6A).
This stability confirms the important inertia of the
artesian aquifer.

In addition, the monitoring of stable isotopes of
rainwater sampled at four different elevations (475,
628, 760 and 923 m) during the 2006–2007 hydro-
logical year was used to calibrate the local elevation
meteoric line: δ18O = −0.0026 × elevation − 4.9672.
We can thus estimate that the aquifer recharge oc-
curs within the elevation range between 710 and
920 m a.s.l. according to Figure 6B, indicating a me-
dian recharge area of about 800 m a.s.l. Consider-
ing that the artesian aquifer recharge area can hardly
extend below about 600 m a.s.l. (see section above
on the geophysical interpretations; 200 m below the
800 m a.s.l. median recharge area), we can conclude
that rainfall precipitated up to about 1000 m a.s.l.
may recharge the artesian aquifer (200 m above the
800 m a.s.l. median recharge area), provided effec-
tive rainfall does not vary too much within this eleva-
tion range [Toulier et al., 2019]. However, as recharge
may also result from runoff after rainfall events, the
upper limit of the recharge area is probably lower
than 1000 m a.s.l. (Figure 4) as runoffmay come from
higher elevations than the recharge upper limit. More
detailed research in that area should be performed to
precise this upper limit.

3.1.3. Hydrological results

The final step in the characterization of the hy-
drosystem is the surface water dynamics. Concerning

surface water, river discharge measurements showed
limited flows in the upstream sectors with specific
flows of 17 to 20 L/s/km2 (river discharges between
120 and 200 L/s for a subcatchment surface of 6.5 to
11 km2). Downstream, the river flow increases up to
4140 L/s for a contributive surface of 40 km2 (spe-
cific discharge of 104 L/s/km2). The overall water-
shed discharge evolves during the year with a de-
crease of the discharge by a factor of 8 during the dry
season (a discharge of 510 L/s and a specific one of
12.75 L/s/km2). In fact, during the dry season, rain-
fall decreases drastically resulting in the drying up
of perched springs and upstream rivers. The map
of specific discharges is presented in Supplementary
Material A.

The analysis of the artesian springs discharge time
series allows a better understanding of the seasonal
variations of hydraulic heads in the aquifer. These
variations are buffered in the deep aquifer, with low
water periods between October and March depend-
ing on the year. The annual variations range between
150 and 190 L/s. The suspected overflow effect de-
scribed previously from the temporary discharge of
the springs located above the springs area zone ap-
pears to be supported by a flow threshold around
190 L/s.

In this section, the combination of geological ob-
servations, geophysical imagery, slope analysis, hy-
drological and hydrogeological observations as well
as geochemical and isotopic analyses allowed to
characterize the hydrosystem’s structure and limits,
and provided a first robust hydrological conceptual
model (Figure 4). The numerical model will then be
based on this conceptual model. Nevertheless, the
numerical model will also enable challenge and, if
possible, confirm the coherence of this conceptual
model.

3.1.4. Water cycle characterization summary

In order to assist in understanding the transition
from the conceptual to the numerical model, the
characteristics of the hydrosystem are summarized
below. In the studied area, a thick clayey layer ex-
tends over the distal area. It thins out at the center
of the distal zone of the watershed, at places where
the slope increases locally. At depth, the underlying
aquifer is confined below this impervious layer over
most of the area. Locally, thanks to the thinnings of
this clayey layer, it outflows through several artesian
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Figure 6. (A) Oxygen and deuterium isotopic ratios of weighted rainfall (in light blue), artesian springs (in
yellow, blue and green according to the sampling periods) and other springs and rivers of the watershed
(in black). Meteoric lines are plotted with dashed lines: dark blue for the global meteoric water line [Craig,
1961]; light blue for the local meteoric line (GNIP station of Jakarta); orange for Bromo line [Toulier et al.,
2019]; and the Salak line (inferred in this study). (B) Analysis of water stable isotopes to estimate the mean
elevation of the recharge of the artesian aquifer.

springs (Figure 7). Outside the artesian spring area
(blue circle in Figure 7), no significant springs were
identified in this distal zone. The layering imaged at
low elevation in the distal zone appears to change in
the proximal zone farther upslope. One of the reasons
is the presence of lava flow fronts in the steep areas of
the proximal zone, which could act as local, perched
aquifers. These perched aquifers feed springs with
different geochemical signatures (Figure 5), charac-
terized by a lower mineralization, and shorter res-
idence time than the deep aquifer, typical of lo-
cal, perched aquifers [Join et al., 2016]. Detritic and
laharic accumulations probably produce the con-
ductive clayey layers imaged near the surface. Far-
ther upstream, slopes are directly underlain by high
permeability pyroclastic flows with no interstratified
low-permeability detrital formations. There, the in-
crease in slope, and progressive disappearance of
clayey deposits blanketing the land surface, agree
with the average recharge elevation estimated from
stable isotopes (Figure 7). However, this result does
not prevent the existence of a recharge from the core
volcano slopes and lower proximal zone.

3.2. Probabilistic lumped model

3.2.1. Lumped model structure

The structure of the hydrological model is then set
up based on hydrosystem architecture described in

Figure 8. The lumped model relies on the equations
previously presented in Section 2.4.

At the top of the model, seasonal fluctuations
in rainfall (R) and actual evapotranspiration (AET)
forcings control the water level in the soil water (SW )
reservoir (Equations (1)–(3)—Figure 8). When the
SW reservoir is full (>SW max), excess water is trans-
formed into effective rainfall (ER). The ER is then
divided between runoff (RO), which supplies stream
water, and infiltration to the shallow perched aquifer
reservoir (P ). The parting of ER fluxes is defined by
the BFI parameter. The discharge of P (QP ) is cal-
culated using Equation (4) and divided into perched
springs discharge (PSD) and the recharge of the arte-
sian aquifer (A), according to the perched flow index
ratio (PFI). This latter corresponds to the ratio be-
tween water feeding perched springs discharge, and
water reaching the artesian aquifer. The discharge of
reservoir A (Q A) represents the artesian spring’s out-
flow, which is simulated and compared to spring dis-
charge measurements during the calibration process
(blue circle—Figure 8B). However, considering that
some springs only discharge during the wet season,
we considered instead that, above a specific water
level in reservoir A (threshold AOvF ), the discharge
of the springs no longer increases. This parameter
consists of a filling ratio of reservoir A. This can be
explained by the drainage of groundwater towards
non-perennial springs (not instrumented) located
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Figure 7. Slopes of the watershed extracted from ALOS DEM with the delimitation of the core of the
volcano, proximal and medial zones. The artesian springs located in the artesian spring area (blue
circle) are characterized by high electrical conductivity (130–250 µS/cm) and perched springs by a lower
electrical conductivity (60–120 µS/cm). The mean recharge area is delimited by the lower (710 m, orange
line) and higher (920 m, green line) limits estimated from water stable isotopes.

at slightly higher elevations (yellow extension—
Figure 8B). To represent that shortcut in the model,

an overflow function (OvF) was implemented into
the artesian reservoir A. The excess water is thus
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Figure 8. Structure (A) and spatial organization (B) of the lumped model. In the structure, the parameters
are represented in red, climatic forcing in green, model fluxes in light blue and model states in dark blue.
In the map, the surface of the recharge area (S) of the model is represented in green. This surface may
evolve according to the results of the isotopic ratios (±∆S). The artesian (blue circle) and the overflow
springs areas (yellow extension) are delineated according to the eroded area in the slopes map (Figure 7).

transformed into a non-perennial springs discharge
(QOvF ).

Consequently, the numerical model resulting
from the proposed conceptual model is thus com-
posed of three reservoirs: SW, P and A (Figure 8A).
Each of them possesses a maximum filling level that
constitutes 3 calibrated parameters: SW max, Pmax,
Amax. The other four parameters of the model are
indexes BFI and PFI, overflow threshold level AOvF ,

and the extension of the recharge area S that supplies
the artesian springs (Figure 8A). As the discharge se-
ries we want to simulate correspond to only a part
of the water flows in the watershed, the model ex-
tension should include only a part of the watershed.
We delineate this feeding catchment S as the area
enclosed within the elevation range of the recharge
area, inferred from the analysis of the isotopic ratios
of the artesian springs (Figure 6B). This surface can
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evolve towards a higher or lower altitude according
to the hydrological cycles and its extension can also
change.

3.2.2. Probabilistic exploration of lumped model
parameters

The calibration of the model is conducted us-
ing the probabilistic approach MT-DREAMZS. For
this purpose, uniform a priori probability distri-
butions are defined for each parameter. Field data
are used to define the range of parameter values to
improve the convergence of the simulations, pre-
vent convergence toward local solutions, and im-
prove the representativeness of spring discharge
simulations.

The first parameter SW max represents the thick-
ness of the soil reservoir that serves as an inter-
face between the atmosphere, the vegetation and the
deep reservoirs. In the watershed, soils are thin on
lava flows but thicken substantially on detrital forma-
tions. The a priori distribution of soil thickness SW
was allowed to vary between 50 and 500 mm (of wa-
ter). The ranges of values of reservoir filling param-
eters of the perched and deep reservoirs, Pmax and
Amax, were set based on geophysical imaging. In the
central and proximal zones, resistant horizons, inter-
preted as perched aquifers, have thicknesses rang-
ing from 1 to 20 m. At depth, the artesian aquifer
displays thicknesses ranging from 10 m up to 60 m.
The size of the feeding catchment S is about 7.2 km2

from the area enclosed within the elevation of the
recharge area, inferred from the analysis of the iso-
topic ratios. However, the recharge may take place
over a larger area as demonstrated by Toulier et al.
[2019]. Therefore, the contributing catchment can
expand up to 30 km2 according to the surface wa-
tershed (Figure 8B). An in-situ observable range of
values for the remaining three parameters can not
be constrained with field data. We therefore allowed
these parameters to vary over a very broad range. In-
dexes BFI and PFI thus vary from 0 to 1, and overflow
AOvF varies between 10 and 50% of the A reservoir
thickness.

Once the size of the parameters space was set,
50,000 MT-DREAMZS iterations were run on 5 Markov
chains (see Supplementary Material B). Over all these
iterations, 1401 sets of parameters were validated by
the Metropolis ratio. Each parameter quickly con-
verged to a best-fit value. Parameters appear uncor-

related with each other, highlighting their indepen-
dence (see the correlation matrix in Supplementary
Materials C). Out of the 1401 simulations, the last
25% are considered as a posteriori simulation and
are used for the analysis of the results. The posterior
PDFs are thus reported on Figure 9.

The parameter exploration converges to a re-
stricted range of posterior distributions. The best-fit
values of SW max, Pmax and Amax are 471 mm, 1.01 and
22.83 m respectively, each one is close to the prob-
ability peak (Figure 9—top panel). Their posterior
distribution at the 95% confidence level is restricted
between 447 and 495 mm, 1 and 1.11 m, and 22.2
and 23.66 m, respectively. These results demonstrate
fairly good confidence in the parameters estimates
despite the low constraint on the deep reservoir. The
area is also fairly well constrained, between 17.1 and
17.6 km2, with an optimum at 17.3 km2. The two
indexes, BFI and PFI, are also focused around their
optimal values 0.4 and 0.43 respectively (range from
0.38 to 0.42 and 0.41 to 0.44). Finally, the optimum of
AOvF is located at 0.174 (range from 0.173 to 0.175).
The good convergence of the Bayesian approach is
remarkable on the simulated flow curve since the
95% prediction interval is narrow (Figure 9—bottom
panel).

With a KGE score of 0.87, the simulation repre-
sents fairly well the dynamics of the artesian springs,
especially at the beginning (2015–2017) and for the
hydrological cycle (2019–2020). In between, the qual-
ity of the simulation is slightly altered. For example,
in 2018, the simulation overestimates the discharge
during the wet season and early 2019, the simulated
discharge keeps decreasing while the observations
increased. Also, the simulation underestimates the
recharge of the aquifer at the end of 2020 and the start
of 2021. Although the simulation is less efficient dur-
ing these periods, the model error does not exceed
6% of the observed discharge.

The last model validation is based on the use of
river specific flows measured in the field. To do this,
our model allows computing the discharge of the dif-
ferent water flows over the watershed (Figure 10).
The simulated watershed runoff (RO) varies between
0 and 7 m3/s on average with larger floods up to
16 m3/s. The perched springs discharge (PSD) varies
between 0.2 and 1.5 m3/s. The artesian springs dis-
charge (Q A) is completly buffered between 150 and
180 L/s.
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Figure 9. Probabilistic exploration of lumped model parameters. The red lines represent the seven
probability density functions (PDFs) of the parameters. In each line, the posterior distribution of each
parameter is defined by dark square. The optimum parameter value is pointed with a blue diamond. The
bottom part represents the artesian springs observed discharge with yellow dots, the optimum simulated
discharge in blue with the 95% range parameters uncertainty. The 95% range parameter uncertainty
represents the variability in simulated spring discharge as a function of the posterior distribution of
parameters. It does not represent a comprehensive assessment of the model uncertainties. The parameter
uncertainty is small since the posterior distribution of the parameters is narrow.

From these simulations, we extracted the aver-
age values corresponding to the months of field
measurements. In December 2020, the runoff mea-
sured in the field was 18 to 20 L/s/km2. In compari-
son, the median specific flow of the model during De-
cember is 13 L/s/km2. However, the simulated floods
occurring during this period have a strong impact on
the average specific flow (50 L/s/km2). Considering
the dry/wet period comparison, while in the field the
river flow is 8 times higher during the wet season, the
model simulates an increase of a factor of 5.5. Nev-
ertheless, the high-frequency variability of the river
flow simulated during the wet season is directly re-
lated to rainfall dynamics. This high variability com-
plicates the analysis of punctual river measurements.
It seems therefore impossible to constrain the model
without continuous monitoring of river flows. Herein
lies the most important margin of progress to im-

prove the simulations. The implementation of con-
tinuous monitoring of river flow, even limited in time,
will improve the robustness of the simulations. This
monitoring should be made at the outlet of the sur-
face watershed as well as upstream in the proximal
zone to calibrate perched and the artesian aquifer
water balance. To do so, the upstream river should be
instrumented to calibrate BFI parameter, as well as
the downstream one for PFI.

3.2.3. Interest of probabilist approach for andesitic
hydrosystem simulation

In this study, we developed a hydrological model
aiming to represent the water cycle on the flanks of
an andesitic volcano. To do so, we followed a two-
step framework including (i) the proposal of a model
structure as simple as possible to represent the com-
plex and heterogenous surface- and ground-water
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Figure 10. Simulation inputs and outputs simulated at daily basis: rainfall (R), actual evapotranspiration
(AET), runoff (RO), perched spring discharge (PSD), and the artesian spring discharge (Q A). The climatic
forcings are in mm/day while the surface and groundwater flows are in m3/s.

behaviors; (ii) a probabilistic approach aiming at de-
termining model parameters using a wider diversity
of punctual measurements data.

Regarding the first issue, we focused on lumped
reservoir models to balance the number of param-
eters with available data. The flexible structure of
such models can be easily adapted to the complex
hydrogeological characteristics of the environment
[Dubois et al., 2020, Mazzilli et al., 2019]. Such a
modelling approach was already implemented in a
French West Indies watershed by Charlier et al. [2008]
who set up a conceptual hydrogeological model
considering both surface and groundwater flows.
Our study goes further by integrating multidisci-
plinary analyses combining geophysical, geochemi-
cal, and isotopic measurements to further constrain
the model structure. Both studies show the ability of
parsimonious reservoir models to represent complex
subsurface flows of minimally instrumented water-
sheds. In these conditions, we assume that this parsi-
monious approach of lumped parameters models is
the most consistent approach to represent the com-
plexity of the volcanic environment. Process-based

models would provide a finer representation of phys-
ical processes but would require extensive additional
data to set up and validate. Given the amount of
available data and the large heterogeneities of the
studied areas, the feasibility of such a modelling ap-
proach is still to be proven.

Regarding the second aspect, we developed a
probabilistic approach aiming at integrating punc-
tual measurements data from a wide variety of disci-
plines. Prior distributions of parameter values were
derived using geophysical imagery, geochemical
and isotopic analyses as well as expert knowledge,
which allows strengthening the confidence in model
simulations. In the future, other datasets could be
integrated to improve the calibration/validation
process as piezometric data [Charlier et al., 2008],
geophysical monitoring [Lesparre et al., 2020], or
groundwater dating [Kolbe et al., 2016]. The in-
tegration of a wider diversity of dataset in water
simulation increase the confidence in the pro-
cesses captured by the model while limiting equi-
finality issues during the calibration of the model
parameters.
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Finally, the probabilistic approach provides pos-
terior distribution of parameter values and an esti-
mation of parameter uncertainty instead of a unique
set of parameters. This allows representing fairly the
parametric uncertainties of the model that are in-
herently large in poorly gauged environments. How-
ever, these parametric results have to be carefully in-
terpreted as (i) DREAM algorithm try to disentan-
gle error source but Bayes’ law suffers from the in-
teraction between individual sources of error (input,
output, parameter, and model structure error); and
(ii) the DREAM algorithm tends to provide a tighter
posterior distribution of parameters than other in-
formal Bayesian approach [Vrugt et al., 2009]. Be-
sides, the analysis of posterior distribution is a first
step towards the identification of ways to improve the
model structure and parametrization by further field
mesurement.

4. Conclusion

The objective of this work was to integrate the
multidisciplinary characterization of a previously
unknown watershed to build a representative hy-
drological model of the water cycle in an andesitic
volcanic aquifer. This characterization was needed
for a better management of the wide variety of water
uses for human needs within the watershed, while
supporting biodiversity. Unfortunately, this char-
acterization was hampered by a significant lack of
measurements. To overcome this difficulty, we de-
fined a parsimonious and realistic conceptual model
in order to understand the hydrological behavior in
function of the climate forcing.

The multidisciplinary field characterization pro-
vides a characterization of hydrosystem structure as
well as the identification of the aquifers distributed
over the watershed. Our study revealed an exten-
sive artesian aquifer at the foot of the andesite vol-
cano confined by detritic clayey deposits. When the
thickness of this latter decreases, due to erosion
and/or thinner deposits, the aquifer supports signif-
icant artesian springs (150–190 L/s). On the slopes
of the volcano, the alternation of lava flows and de-
tritic formations allows the development of perched
aquifers with small extension. While the recharge of
both types of aquifers occurs on the volcano slopes,
extension and outlet location of the aquifers induce
spatially different behaviors. This characterization

based on data analysis and field observations allowed
to set up a conceptual lumped model characterized
by various reservoirs representing closely the differ-
ent functions observed. This model is used to simu-
late the artesian springs discharge.

Due to data scarcity, we improved the hydrologi-
cal simulation by implementing a probabilistic esti-
mation of the model parameters. The field character-
ization allowed to define a uniform a priori distribu-
tion for some of the parameters. From these distribu-
tions, the use of several Markov chains allowed to test
a wide range of parameter sets while limiting the in-
fluence of local optima. The Bayesian simulation al-
lows providing a PDF to analyze the uncertainty of
parameter values. Finally, the uncertainty could be
represented on the simulated water flows to estimate
its impact.

This combination of a field-based approach and
the probabilistic integration of field measurements
allows reinforcing the simulation of ungauged water-
sheds. Despite a limited constraint on surface river
flow, this simulation allows today to better man-
age the groundwater resource in this strategic sec-
tor. In the future, new field acquisitions could be
guided by the simulation results. To go further, it
would be possible to integrate into the model other
reservoirs to represent the main anthropogenic activ-
ities that develop rapidly in the watershed. First, an
exchange function with urban areas could be added.
This function would withdraw groundwater from the
deep aquifer and discharge water to the surface. A
second reservoir representing the rice terraces would
allow the model to be refined by integrating the de-
layed effect of surface flows, the increase in evapora-
tion, and the influence on the recharge of agricultural
practices.
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