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Abstract. At a conference some years ago, one of the attendees came up to Ghislain de Marsily and
asked, “Excuse me, but aren’t you the de Marsily who developed the Pilot Point Method? It is an
honor to meet you.” His response highlights one of Ghislain’s greatest qualities, his humility: “Yes I
am, thank you, you are very kind, but that was a very long time ago.” Since Ghislain de Marsily first
developed the Pilot Point Method (PPM) in 1978, its development and use has grown significantly in
applied decision-support modeling settings including hydrogeology, as well as in other industries, e.g.,
petroleum reservoir engineering. A technique that was once confined to academic realms, the PPM
is now widely accepted as one of the industry pillars of inversion and uncertainty quantification for
predictive groundwater modeling. Herein, we provide an update to de Marsily’s paper entitled “Four
Decades of Inverse Problems in Hydrogeology” [De Marsily et al., 2000], but with a particular focus on
the incredible adoption and advancement of de Marsily’s PPM and related inverse techniques over the
last twenty years in the field of predictive groundwater modeling.

Much has been written about the vast array of inverse techniques developed by researchers and
practitioners since the 1960s. de Marsily’s PPM, like many methods developed in the late 70s and
early 80s, structured its approach to parameterization to overcome many of the challenges of applying
inverse methods to real world problems, namely, limited head and transmissivity data relative to the
number of unknowns to be estimated, measurement errors, inferred covariance structures of the state
variables, and limited computational resources. While inversion research continues, only de Marsily’s
PPM has achieved wide-spread adoption within the groundwater modeling community.

The reasons for the popularity of the PPM are many but none more important than its adoption by
John Doherty’s PEST inversion software in the early 2000s [Doherty, 2003]. This paper will review the
advancements and adaptations of the PPM over the last two decades which have led to its ubiquity.
Significant reductions in inversion time are transforming the way in which practitioners are deploying
the PPM to improve their understanding of hydrogeologic systems, and, ultimately, to provide decision
support for water resource management. The paper ends with newly developed applications of the
PPM, given modern machine learning capabilities, and some foreshadowing as to where the PPM
might evolve.
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1. Introduction

Since the 1970’s, the advancements in computer
models and associated tools and techniques used to
simulate groundwater systems have enhanced hy-
drogeologists’ understanding of the uncertainty in
important simulated outcomes, and ultimately, the
risks of decisions related to water supply planning,
groundwater remediation and other commercial or
academic pursuits. These models, tools and tech-
niques collectively make up an important facet of
water resource management decision support which
aspire to simulate groundwater flow over space and
time and the associated uncertainty in the simula-
tion results. Appropriately representing the salient
aspects of complex natural groundwater system with
a necessarily simple numerical representation and
then combining that simplified representation with
formal inverse and data assimilation techniques to
extract meaningful information from available state
observations is one of the drivers behind the ad-
vancements in predictive groundwater modeling.
Transformation from data to decisions has therefore
been the underlying motivation for research in the
area of decision support systems. In this regard, Ghis-
lain de Marsily’s contribution to the advancement of
the inverse methods, a key component of decision
support systems, cannot be understated.

Prior to de Marsily’s doctoral research published
in French in 1978, modelers had resorted to very
simplistic representations of the hydrogeologic data
obtained from field investigations due to the lack
of techniques to appropriately leverage information
embedded in the data. These simplistic techniques
typically included the use of zones of pre-determined
shape and of large spatial extent, which were as-
signed constant values for hydrogeologic properties
such as transmissivity. The zones could not represent
the expected (and necessarily stochastic) patterns of
spatial heterogeneity often observed in hydrogeo-
logic system properties at many scales. Therefore, the
solutions from these early models were plagued with
large and unknown errors initiating from the blocky,
unrealistic representation of hydrogeologic proper-
ties used in the models and propagated to the deci-
sions these models were meant to inform. The earli-
est attempts to use formal optimization methods to
invert the solution of the groundwater flow equation
were thwarted when it was discovered that errors in

the hydraulic head measurements, and moreover in
the hydraulic gradient, could lead to instabilities in
the inverse solution [Emsellem and De Marsily, 1971,
Kleinecke, 1971, De Marsily et al., 2000].

de Marsily’s doctoral research presented an alter-
native inverse method which overcame these chal-
lenges. He posed the coupling of a new field of
research referred to as geostatistics, or spatial sta-
tistics, to represent the groundwater system prop-
erty fields as continuously varying surfaces, thereby
overcoming the known limitations of zonation-based
schemes. He parameterized the inversion using an
indirect inversion technique which enabled him to
overcome the numerical instabilities from errors in
the measured head data. Lastly, he also adopted the
recently published adjoint technique [Chavent, 1974]
to efficiently compute sensitivities of the computed
head field to changes in the parameter values en-
abling him to quickly obtain an inverse solution in
high dimensions. de Marsily called his technique the
“Pilot Point Method” (PPM) because of the way in
which he used specific locations to impose changes
in parameter field, locations he called “pilot points”.
The pilot points would be added to the geostatistical
kriging equations and their values assigned optimally
to change or “warp” the modeled transmissivity field
to reduce the error between the simulated groundwa-
ter levels and their measured counterparts. The PPM
method fundamentally changed the way groundwa-
ter modelers approached the inverse method and is
still ubiquitous in groundwater modeling today.

Herein, we provide a brief overview of the the-
ory and history of the PPM, focusing on the im-
portant contributions of de Marsily. We finish with
some brief remarks related to some of the more re-
cent advances in the PPM and how it continues to
serve the decision-support groundwater modeling
community.

2. Concepts and theory of the PPM

In the PPM, the Bayesian viewpoint of the ground-
water model inverse problem is adopted. Originally,
the PPM focused on the estimation of the mod-
eled transmissivity field. The log of measured trans-
missivity is used to transform the statistical distri-
bution of transmissivity (considered to be logarith-
mic; [Law, 1944, Sánchez-Vila et al., 1996]) to be
Gaussian. The unknown log transmissivities in be-
tween measurements are viewed as variables of a
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Multi-Gaussian random function (RF). Log transmis-
sivity at a point in space is considered a Gaussian ran-
dom variable (RV) which may or may not have a dis-
tribution which is statistically dependent on, or cor-
related to, its neighboring transmissivities. A trans-
missivity measurement at location (x, y, z) is concep-
tually considered as a sample from the RV distribu-
tion at point (x, y, z). As presented by Matheron and
Blondel [1962], Matheron [1963], kriging provides the
best unbiased estimate of the RV at any point in space
given observed data and the correlation between
the data.

In de Marsily’s work, the RV was log transmis-
sivity and the estimation points were the grid block
centroids of his finite-difference groundwater flow
model. He employed ordinary kriging (OK) to esti-
mate the initial log transmissivity field. OK provides
estimates of a RV at any point (or area) in space
through the use of measurements of the RV already
available and their covariance [see Chilès and Desas-
sis, 2018]. The OK estimator is given by:

Z∗
m(u) =

n∑
β=1

vβ,m Z (uβ) (1)

where Z∗
m(u) is the log of the transmissivity esti-

mate at the centroid of grid block m (located at (u) =
(x1, x2, x3)), Z (uβ) is the log of the measured trans-
missivity data at point uβ, and vβ,m is the kriging
weight assigned to measurement locationβ given the
estimation point (u). The covariance of the RV affects
the magnitude of the kriging weights through the so-
lution of the following system of equations used to
determine vβ,m .

n∑
β=1

vβ,mC (uβ−uα)+µ(u) =C (u −uα),α= 1, . . . ,n

n∑
β=1

vβ,m = 1

(2)
where the vβ,m are the OK weights and C (uβ − uα)
is the covariance of the RV between measurements
points β and α. µ(u) is the LaGrange parameter as-
sociated with the constraint in the second expression
in Equation (2) designed to “filter” out the local mean
value to preserve stationarity.

The solution of the inverse problem using the PPM
relies upon an expanded form of (1):

Z∗
m(u) =

n∑
β=1

vβ,m Z (uβ)+
N∑

p=1
vp,m Z (up ) (3)

where Z (up ) is the log transmissivity at a pilot point,
vp,m is its associated kriging weight and N is the to-
tal number of pilot points. The location and num-
ber of the pilot points were subjectively chosen by
de Marsily. He suggested the number of pilot points
to be less than the observed transmissivity values
and that the pilot points should be placed in ar-
eas with high hydraulic-head gradient. As illustrated
in Equation (2), the kriging weights vβ,m (and thus
vp,m) do not depend on actual values of the RF, Z (u).
Thus, they may be solved for, prior to assigning trans-
missivities estimates/values to the pilot points. de
Marsily’s PPM thus consists of estimating Z (up ) so
as to minimize the weighted least-squares objective
function of the measured-to-simulated residual vec-
tor, φẐ :

φẐ = (h∗− ĥ)T Vh
−1(h∗− ĥ) (4)

where h∗ is the vector of simulated groundwater
level, ĥ is the corresponding measured values of
groundwater level, and Vh is the covariance matrix of
measurement noise.

The sensitivity derivatives required to assign the
optimal value of pilot-point transmissivities are com-
puted with the adjoint technique [Chavent, 1974]
and the kriging equations (Equation (2)). The over-
all equation solved by the PPM may be presented as
follows.

Let Zm represent the log transmissivity value as-
signed to grid block m. Using the chain rule, the sen-
sitivity of the weighted least-squares objective func-
tion, φ, to the log transmissivity value assigned to
each pilot point may be expressed by:

dφ

dZp
=

M∑
m=1

∂φ

∂Zm

∂Zm

∂Zp
(5)

where M is the total number of grid blocks in the flow
model. The second term on the right-hand side of
Equation (5) may be reduced by taking the derivative
of Equation (3) with respect to pilot-point transmis-
sivity. Therefore,

∂Z∗
m(um)

∂Zp (up )
= vp,m (6)

Substituting the right-hand side of Equation (6) into
Equation (5) and simplifying yields,

dφ

dZp
= 2.3

M∑
m=1

vp,mkm
dφ

dkm
(7)

where k is the permeability of grid block m. The
sensitivity coefficient, dφ/dkm , can be obtained by
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adjoint sensitivity analysis or by perturbation meth-
ods and used to determine the optimal values of the
pilot-point’s log transmissivity by modifying the ini-
tial guess of the pilot point transmissivities (taken
as the kriged estimate at vp obtained from the mea-
sured data). de Marsily states that constraints to the
pilot-point transmissivities could be applied to en-
sure that the pilot-point transmissivities lie within ±2
standard deviations of the kriged estimate.

As mentioned earlier, de Marsily’s PPM was the
first to solve many of the problems inherent in
the earlier inverse techniques. By incorporating geo-
statistics and logarithms of transmissivity, he en-
sured a smooth but spatially varying transmissivity
field even in the presence of significant errors in the
head field. In addition, he stabilized the inverse solu-
tion by:

• adding prior information, e.g. regularization,
in the form of initial kriged estimates at the
pilot point locations,

• properly posing the inverse problem by re-
ducing the number of unknowns to a small
number of pilot points,

• implementing the transmissivity changes in
the neighborhood of a pilot point in accord
with the variogram, and

• utilizing efficient adjoint sensitivity tech-
niques to obtain the necessary derivatives
for the optimization routine.

3. Early PPM advances

The first mention of the PPM was in de Marsily’s
PhD dissertation [De Marsily, 1978], which describes
using “pilot points” at discrete locations. One of the
first applications of the PPM published in English
was presented in De Marsily et al. [1984]. Here the
PPM was used to obtain the permeability field which
reproduced interference tests in a well field.

In the late 1980s and early 1990s, research of
geostatistical methods by Ahmed and De Marsily
[1987] and research of the inverse problem by Certes
and De Marsily [1991] resulted in improvements to
the PPM. Lavenue and Pickens [1992] coupled or-
dinary kriging and the PPM to history match a re-
gional groundwater model at the Waste Isolation Pi-
lot Plan (WIPP) site in Carlsbad, New Mexico. They
also adopted an adjoint sensitivity method to op-
timally locate pilot points, which were sequentially

added to the model during an iterative inversion pro-
cess. One of the significant features added to the
model transmissivities during inversion was a high-
transmissivity fracture zone which provided a fast
offsite pathway to the WIPP-site boundary poten-
tially threatening the WIPP site safety assessment.

A technical review panel comprising the leading
groundwater inversion researchers of the 1990s was
convened by Sandia National Laboratories to review
the WIPP model construction, inversion and travel
time calculations. This panel, called the Geostatis-
tics Expert Group (GXG), was headed by Ghislain de
Marsily. The GXG recommended that the PPM ap-
proach be expanded to calibrate an ensemble of con-
ditionally simulated transmissivity fields in order to
investigate groundwater travel time uncertainty to
the WIPP-site boundary. de Marsily, Lavenue, and
RamaRao did so by linking a conditional simula-
tion front-end routine (using turning bands), a flow
model (SWIFT II), an adjoint sensitivity routine to
optimally located pilot points and a conjugate gra-
dient optimization routine to assign the pilot-point
transmissivity values. In 1995, the resulting new PPM
method referred to as GRASP-INV and its applica-
tion to the WIPP site produced an ensemble of 100
conditionally simulated transmissivity fields [Rama-
rao et al., 1995, Lavenue et al., 1995].

This extension of the PPM method to produce an
ensemble of solutions, all equally calibrated or “his-
tory matched” to the observed data, was a significant
step forward in the quantification of posterior uncer-
tainty, which ultimately allowed for a more complete
risk assessment to support decision making. It also
laid a foundation for the use of inversion and sensi-
tivity techniques to assess data worth which guided
future data acquisition campaigns at the WIPP site to
further reduce uncertainties in our understanding of
the hydrogeologic system.

Shortly afterward, Gomez-Hernandez and his
fellow researchers at the University of Valencia,
Spain, developed a non-linear pilot-point tech-
nique (or a “pilot-point-like” method as one re-
viewer pointed out) that differs from the original ap-
proach of De Marsily [1978] and Lavenue et al. [1995].
These works include Sahuquillo et al. [1992], Gómez-
Hernánez et al. [1997], and Capilla et al. [1997].
The solution of the inverse problem using Gomez-
Hernandez’ approach is significantly faster than
that of Lavenue and Pickens [1992] or Certes and
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De Marsily [1991] for several possible reasons. First,
Gomez-Hernandez did not update the sensitivity
derivatives as frequently as the other pilot-point ap-
proaches. The second major difference in Gomez-
Hernandez’s method is that he assumed the conduc-
tance between two finite-difference grid blocks is
expressed by the geometric mean (as opposed to the
harmonic mean) of the associated grid-block trans-
missivities, which significantly reduced the time re-
quired to compute sensitivities. The combined effect
of these differences significantly sped up the inver-
sion process using Gomez-Hernandez’s technique
which he called the sequential self-calibration (SSC)
pilot point method.

Sandia National Laboratory decided to bench-
mark GRASP-INV against other inversion tech-
niques represented by the GXG members and in-
vited Gomez-Hernandez to participate. This unique
bench-marking exercise, described in Zimmerman
et al. [1998], evaluated the performance of virtually
every inversion technique used by industry and aca-
demics at that time. The ultimate objective of the
study was to determine which of several geostatis-
tical inverse techniques is better suited for making
probabilistic forecasts of the potential transport of
solutes in an aquifer where spatial variability and un-
certainty in hydrogeologic properties are significant.
Seven geostatistical methods were compared on
four synthetic data sets. The inverse methods tested
were categorized as being either linearized or non-
linear [Carrera and Glorioso, 1991]. The linearized
approaches are generally based upon simplifying
assumptions about the flow field (e.g., a uniform
hydraulic head gradient, a small log(T ) variance,
etc.), that lead to a linearized relation between T and
head using a perturbation expansion of the head
and transmissivity fields. This equation can then be
solved analytically or numerically. The nonlinear ap-
proaches have no such restrictions placed on them
and can, in principle, handle more complex flow
fields or larger log(T ) variances. Linearized methods
included the Fast Fourier Transform inverse method
by Gutjahr et al. [1994], the Linearized Cokriging
Method by Kitanidis and Lane [1985], and the Lin-
earized Semianalytical method by Rubin et al. [1992],
while the non-linear methods included the Fractal
Simulation inverse method by Grindrod and Impey
[1991], the Maximum Likelihood inverse method
by Carrera [1994], the Pilot Point Method [Rama-

rao et al., 1995] and the SSC pilot point method by
Gomez-Hernandez [Gómez-Hernánez et al., 1997].
While the non-linear inverse methods were superior
to the linearized inverse methods, the most robust
results came from the inverse methods that were able
to incorporate rigorous geostatistics into the inver-
sion process, that is, inversion suffered when a tech-
nique could not adequately represent nor modify the
expected spatial (e.g. Prior) patterns of variability of
the aquifer properties.

Lessons learned in Zimmerman et al. [1998] re-
garding the importance of robust geostatistics led de
Marsily, Lavenue and RamaRao to enhance their PPM
by adopting the GSLIB [Deutsch and Journel, 1992]
routines for conditional simulation. They collabo-
rated with Gomez-Hernandez in this effort which re-
sulted in a new conditional simulator for the PPM
which could produce an ensemble of multi-facies
geostatistical fields with unique covariance struc-
tures using categorical indicator simulation followed
by sequential gaussian simulation to overlay spatial
variability within each facies. de Marsily, Lavenue
and RamaRao linked this new capability to their PPM
method and later applied it to the WIPP site regional
model [Lavenue, 1998]. Unique to this enhancement
was the ability of the PPM to optimize the spatial
variability within each facies (fractured and unfrac-
tured zones) separately to match transient water lev-
els. It also enabled the delineation of a sharp frac-
tured/unfractured zone interface within the regional
aquifer which reduced travel time uncertainty. Lav-
enue and de Marsily then extended this version of the
PPM to three dimensions and demonstrated its util-
ity by matching a series of three-dimensional inter-
ference tests [Lavenue and De Marsily, 2001].

Other research motivated by Zimmerman et al.
[1998] included methods to enforce prior plausibil-
ity in a Bayesian sense, the work of Alcolea et al.
[2006], Riva et al. [2010] and later Jiménez et al.
[2016] worked to include expert knowledge into the
PPM solution process so that the resulting prop-
erty fields were adjusted in harmony with the prior
estimates.

4. The tipping point

Notwithstanding the developments and advance-
ments of the PPM cited above, its use was not
widespread since the PPM was largely coupled to
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groundwater model software not widely used by in-
dustry. This changed in the late 1990s, when John
Doherty, adopted the PPM for his PEST software
suite and produced a full suite of advanced software
tools that allowed the PPM to be applied at scale in
an unlimited number of settings. Unlike the existing
adjoint-based PPM approaches, the PEST software
suite relies on non-intrusive/model-independent
approaches, such as finite-difference derivatives to
estimate the first-order relation between param-
eters and simulation results, so that it can be ap-
plied to practically any forward numerical ground-
water model. Doherty realized that like PEST, the
PPM can be implemented in a non-intrusive/model-
independent approach, so that the PPM could also
be applied to practically any forward numerical
groundwater model. This shifted the use of the PPM
from the bespoke research and development projects
cited above to the broader groundwater modeling
community, a tipping point of scaling the PPM to
industry at large.

Within the PEST framework, the PPM serves as
an indispensable parameterization scheme, one that
balances the need to express uncertain spatial het-
erogeneity in model inputs with the requirement to
maintain a computationally tractable inverse prob-
lem and represent broad-scale heterogeneity. We
generalize from transmissivity to “model inputs” here
because with the non-intrusive PEST framework, pi-
lot points are commonly used to represent realis-
tic spatial heterogeneity in a wide-range of uncer-
tain properties and boundary condition elements
that numerical models require. For example, Knowl-
ing and Werner [2016] and later Knowling and Werner
[2017] used pilot points to represent uncertain spatial
patterns of recharge, while McKenna et al. [2020] and
later White et al. [2020a] used pilot points in a multi-
scale parameterization scheme to explicitly represent
different scales of heterogeneity and associated un-
certainty.

The issue of inverse problem stability and posed-
ness with the PPM were both overcome through
the adoption of formal Tikhonov regularization
[Tikhonov, 1963, Tikhonov and Arsenin, 1977] [see
Tonkin and Doherty, 2005, Fienen et al., 2009, Do-
herty et al., 2010, Doherty, 2015], in combination
with truncated subspace solution techniques [see
Oliver et al., 2008, Aster et al., 2018, Doherty, 2015].
These two advancements, which were implemented

at scale to function in concert with each other
for the first time in PEST software suite, allowed
practitioners to forego the need to a priori reduce
the number of pilot points to stabilize the inverse
problem—Tikhonov regularization and truncated
subspace techniques optimally and unconditionally
stabilize the inverse problem. Now practitioners were
free to express expected property heterogeneity (and
associated uncertainty) at scales that are relevant to
the predictive outcomes of the model.

5. Où En Sommes-Nous maintenant?

With the recent advancements in the PPM men-
tioned above, the combined use of the PPM and PEST
has led to wide-spread investigation of predictive un-
certainties in applied groundwater modeling, which
is facilitated by the PPM allowance for a more com-
plete and robust expression of expected patterns of
spatial heterogeneity in subsurface properties [see
for example Moore and Doherty, 2005, James et al.,
2009, Dausman et al., 2010, Herckenrath et al., 2011,
Tonkin and Doherty, 2009, Christensen and Doherty,
2008, Keller et al., 2021].

The PPM, as embodied within Doherty’s PEST
software suite, continues to serve an important
role in decision-support environmental simulation
around the world and new developments continue.
Several recent advancements have focused on ex-
panding the use of pilot points from 2-point geo-
statistics to multipoint geostatistics [see Li et al.,
2013, Mariethoz and Caers, 2014, Ma and Jafarpour,
2018, Khambhammettu et al., 2020, Liu et al., 2021].
The capability of these pilot point methods to facil-
itate the use of multi-point geostatistical property
representations within formal data assimilation is
a major advancement in settings where high-order
multi-point geostatistical property representations
are important, such as settings where connected per-
meability are important for representing the fate and
transport of dissolved-phase constituents.

So “Where are We Now?” Groundwater model-
ers have more computational power than ever be-
fore to build highly complex models and invert them
with PEST, and more recently, the PEST++ software
suite [White et al., 2020b]. With the related advance-
ments in history matching using the iterative en-
semble smoother approaches [e.g. Chen and Oliver,
2013, White, 2018], practitioners are able to more
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efficiently employ high-dimensional inversion and
uncertainty quantification in non-intrusive ways and
at scales not previously possible except for those
with access to high-performance computing. This
“guilded age” of inversion however comes with the
responsibility of parsimony. It cannot be overstated
that sound groundwater model analyses are built on
the foundation of a solid hydrogeologic conceptual
model that is focused on the predictive purpose of
the modeling, and a firm grasp of the sources and
magnitudes of model input (i.e. parameter) and con-
ceptual model uncertainty. Decisions based on the
associated numerical model can only then take full
advantage of the decision-support simulation tools
discussed herein.

A final comment: When asked about his upcom-
ing conference presentation in the early 1980s, de
Marsily mentioned that his talk was on applying geo-
statistics in hydrogeology, which at the time was vir-
tually unknown in the US. He went on to say that
he felt it was important to explain to the audience
how powerful geostatistical tools are to hydrogeol-
ogists and that it “was never too late to learn new
things”. He was right on both points. Countless hy-
drogeologists have been positively impacted by the
“new things” Ghislain de Marsily taught us and by
his example of leading with humility, style and grace.
Thank you, Ghislain.
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