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Abstract

In this Note we give a simple proof of a conjecture by A. Căldăraru stating the compatibility between the modified Hochschild–
Kostant–Rosenberg isomorphism and the action of Hochschild cohomology on Hochschild homology in the case of Calabi–Yau
manifolds and smooth projective curves. To cite this article: E. Macrì et al., C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

La structure module de l’homologie de Hochschild dans quelques exemples. Dans cette Note nous donnons une démons-
tration simple d’une conjecture d’A. Căldăraru énoncant la compatibilité entre l’isomorphisme modifié de Hochschild–Kostant–
Rosenberg et l’action de la cohomologie de Hochschild sur l’homologie de Hochschild dans le cas des variétés de Calabi–Yau et
des courbes projectives régulières. Pour citer cet article : E. Macrì et al., C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let X be a smooth projective variety over the complex numbers and let Δ:X → X × X denote the diagonal
embedding. The Hochschild cohomology ring of X is defined as

HH∗(X) := H
∗(U),

where

U := Rp∗RHomOX×X
(Δ∗OX,Δ∗OX) ∼= RHomOX

(LΔ∗Δ∗OX,OX),
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the morphism p :X × X → X is one of the two projections and the multiplication ∪ is induced by the composition.
On the other hand, the Hochschild homology of X is

HH∗(X) := H
−∗(F),

where

F := LΔ∗Δ∗OX.

The module structure over HH∗(X) on HH∗(X) is simply induced by the action ∩ :U
L⊗OX

F → F coming from the
duality between U and F (see [2,8]). More precisely, for any i, j ∈ Z, the action is given by a morphism

∩ : HHi (X) ⊗ HHj (X) → HHj−i (X).

Denote by TX the tangent sheaf on X. The natural morphism I :S∗(TX[−1]) ∼→ U given by the adjoint of the
universal Atiyah class (see [2]) is an isomorphism in Db(X) := Db(Coh(X)) and it is known as the Hochschild–
Kostant–Rosenberg isomorphism. On the level of cohomology, this induces an isomorphism

I : HT∗(X) := H
∗(S∗(TX[−1])) ∼→ HH∗(X).

The wedge product yields a ring structure on S∗(TX[−1]) and hence on HT∗(X), but the map I in general is not a
isomorphism of rings. It was Kontsevich’s insight that the modified isomorphism

IK := td−1/2(X) � I−1 : HH∗(X)
∼→ HT∗(X)

preserves the ring structures (see [4,1]). The differential operator � contracts a polyvector field with a differential form
and td(X) is the Todd class of the tangent sheaf of X.

If ΩX is the cotangent sheaf on X, the dual of I gives an isomorphism E:F ∼→ S∗(ΩX[1]) in Db(X) which in turn
induces the Hochschild–Kostant–Rosenberg isomorphism

E : HH∗(X)
∼→ H�∗(X) := H

−∗(S∗(ΩX[1])).
Again, one modifies E getting the isomorphism

IK := td1/2(X) ∧ E : HH∗(X)
∼→ H�∗(X).

Locally, IK :F ∼→ S∗(ΩX[1]) is the dual of (IK)−1:S∗(TX[−1]) ∼→ U in Db(X). The contraction � gives an action
of S∗(TX[−1]) on S∗(ΩX[1]).

Conjecture 1.1 (Căldăraru). The isomorphisms IK : HH∗(X)
∼→ HT∗(X) and IK : HH∗(X)

∼→ H�∗(X) are compat-
ible with the module structures on HH∗(X) and H�∗(X).

This is the last unsolved part of a conjecture in [2]. The other pieces of it were treated in [1,4–6]. The previous
conjecture has been proved in [3] when X has trivial canonical bundle, using a result in [6]. In turn, the proof of
the latter is rather technical. The purpose of this note is to give a simple proof of the following result, relaying only
on [4,1]:

Theorem 1.2. Conjecture 1.1 is true when X has trivial canonical bundle or has dimension 1.

It may be worth pointing out that, also in the Calabi–Yau case, our proof differs completely from that in [3].

2. The proof

In the case X is a projective space P
n, Conjecture 1.1 can be easily proved by elementary means. Indeed HH∗(Pn) =

HH0(P
n). Since the action of HH∗(Pn) on HH∗(Pn) is graded, the only thing one has to check is that HH0(Pn) =

C · idHH∗(Pn) acts compatibly with the modified Hochschild–Kostant–Rosenberg isomorphism IK . But this is clear
since, by [4,1], IK is a ring isomorphism and maps the identity to the identity. The same proof applies to all smooth
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projective varieties X whose derived category Db(X) is generated by a strong exceptional collection (e.g. quadric
hypersurfaces).

For the other cases, assume that X is smooth and projective. Denote by 〈−,−〉HH:U
L⊗OX

F → OX the duality
pairing. Analogously, 〈−,−〉H is the duality pairing S∗(TX[−1])⊗OX

S∗(ΩX[1]) →OX . By definition, the following
diagram

U
L⊗OX

F

IK
L⊗OX

IK

〈−,−〉HH OX

S∗(TX[−1]) ⊗OX
S∗(ΩX[1]) 〈−,−〉H OX

commutes in Db(X). Passing to cohomology, we get the commutative diagram

HH∗(X) ⊗ HH∗(X)

IK⊗IK

〈−,−〉HH
H ∗(OX)

HT∗(X) ⊗ H�∗(X)
〈−,−〉H

H ∗(OX),

which can equivalently be rewritten as

HH∗(X)

IK

HH∗(X)∨ ⊗ H ∗(OX)

((IK)∨)−1⊗id

H�∗(X)
η

HT∗(X)∨ ⊗ H ∗(OX).

(1)

To prove Theorem 1.2, we have to show that the diagram

HH∗(X) ⊗ HH∗(X)

IK⊗IK

∩ HH∗(X)

IK

HT∗(X) ⊗ H�∗(X)
� H�∗(X)

(2)

is commutative. For this, assume that η in (1) is injective. Then (2) is commutative if and only if the following diagram
is commutative

HH∗(X) ⊗ HH∗(X)

IK⊗IK

∩ HH∗(X)

IK

HH∗(X)∨ ⊗ H ∗(OX)

((IK)∨)−1⊗id

HT∗(X) ⊗ H�∗(X)
� H�∗(X)

η
HT∗(X)∨ ⊗ H ∗(OX).

(3)

Notice that, more or less by definition, one has

〈−,−〉HH ◦ (
id

L⊗OX
(− ∩ −)

) = 〈−,−〉HH ◦ (
(− ∪ −)

L⊗OX
id

)
:U

L⊗OX
U

L⊗OX
F → OX

in Db(X). Similarly

〈−,−〉H ◦ (
id ⊗OX

(− � −)
) = 〈−,−〉H ◦ (

(− ∧ −) ⊗OX
id

)
.

Hence, passing to cohomologies, the main result of [1] (see also [4]) ensures that (3) commutes, provided that η is
injective.

2.1. The Calabi–Yau case

Consider the composition with the natural projection

H�∗(X)
η→ HT∗(X)∨ ⊗ H ∗(OX) � HT∗(X)∨ ⊗ Hn(OX),

where n is the dimension of X and the canonical sheaf of X is trivial. By Serre duality, an easy computation shows
that this map is an isomorphism. Hence, the map η is injective when the canonical sheaf of X is trivial.
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2.2. The curve case

If X is a smooth projective curve of genus 0 or 1, the result follows from what we observed at the beginning
of this section and from the previous case. Hence we can suppose that the genus of X is greater than 1. Under this
assumption, we just need to check three non-trivial cases. Namely the actions HH2(X) ⊗ HH1(X) → HH−1(X),
HH1(X) ⊗ HH0(X) → HH−1(X), and HH1(X) ⊗ HH1(X) → HH0(X).

To deal with the first two cases, we just need to show that η|H�−1(X) is injective. This is proved as follows. Pick a
non-trivial f ∈ HomDb(X)(OX,ωX), where ωX is the canonical sheaf. Then the following diagram commutes:

HomDb(X)(OX,ωX) ⊗ HomDb(X)

(
ωX,OX[1])

id⊗(f [1]◦(−))

α HomDb(X)

(
OX,OX[1])

f [1]◦(−)

HomDb(X)(OX,ωX) ⊗ HomDb(X)

(
ωX,ωX[1]) β

HomDb(X)

(
OX,ωX[1]),

(4)

where the horizontal maps are given by composition. By the Serre duality, β is a non-degenerate pairing. Since α is
nothing but (a graded piece of) the pairing 〈−,−〉H , it is straightforward to see that the morphism η is injective.

The last case follows from the following general lemma since HH1(X) ∼= H 1(OX), for a curve of genus greater
than 1.

Lemma 2.1. Let X be a smooth projective variety. Then the following diagram commutes

H ∗(OX) ⊗ H�∗(X)
�

ϕ⊗(IK)−1

H�∗(X)

(IK)−1

HH∗(X) ⊗ HH∗(X)
∩ HH∗(X),

where ϕ:OX = ∧0 TX ↪→ S∗(TX[−1]) (IK)−1−−−−→ U .

Proof. First of all, observe that ϕ is a morphism of rings in Db(X) (see, for example, [7]). Hence the following
diagram commutes in Db(X)

OX ⊗OX
S∗(ΩX[1])

ϕ
L⊗(IK)−1

�
S∗(ΩX[1])

(IK)−1

U
L⊗OX

F
∩ F .

Taking cohomology, one gets the desired commutative diagram. �
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