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Abstract

Let f be an entire function of the exponential type, such that the indicator diagram is in [−iσ, iσ ], σ > 0. Then the upper density
of f is bounded by cσ , where c ≈ 1.508879 is the unique solution of the equation

log
(√

c2 + 1 + c
) =

√
1 + c−2.

This bound is optimal. To cite this article: A. Eremenko, P. Yuditskii, C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Un problème extrêmal pour une classe de fonctions entières. Soit f une fonction entière d’indicatrice contenue dans l’inter-
valle [−iσ, iσ ], σ > 0. Alors la borne supérieure des zéros de f ne dépasse pas cσ , où c ≈ 1,508879 est la solution d’équation,

log
(√

c2 + 1 + c
) =

√
1 + c−2.

Cette borne est exacte. Pour citer cet article : A. Eremenko, P. Yuditskii, C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

We consider the class Eσ , σ > 0 of entire functions of exponential type whose indicator diagram is contained in a
segment [−iσ, iσ ], which means that

h(θ) := lim sup
r→+∞

log |f (reiθ )|
r

� σ | sin θ |, |θ | � π. (1)

An alternative characterization of such functions follows from a theorem of Pólya [6]:

f (z) = 1

2π

∫
γ

F (ζ )e−iζz dζ,
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where F is an analytic function in C̄ \ [−σ,σ ], F (∞) = 0, and γ is a closed contour going once around the segment
[−σ,σ ]. In other words, the class of entire functions satisfying (1) are Fourier transforms of hyperfunctions supported
by [−σ,σ ], see, for example, [2] and [3].

Let n(r) be the number of zeros of f in the disc {z: |z| � r}, counting multiplicity. We are interested in the upper
density:

D = lim sup
r→∞

n(r)

r
. (2)

If f satisfies the additional condition:
∞∫

−∞

log+ |f (x)|
1 + x2

dx < ∞, (3)

then the limit (density) in (2) exists and equals (2π)−1
∫ π

−π
h(θ)dθ . For example, if f (z) = sinσz, then f ∈ Eσ and

D = 2σ/π ≈ 0.6366σ . The existence of the limit follows from a theorem of Levinson [5,6]. Much more precise
information about n(r) under the condition (3) is contained in the theorem of Beurling and Malliavin [1].

In the general case, the density might not exist as was shown by examples in [4,10]. Moreover, it is possible that
D > 2σ/π , see [2]. An easy estimate using Jensen’s formula gives D � 2eσ/π ≈ 1.7305σ . This estimate is exact in
the larger class of entire functions satisfying the condition h(θ) � σ , but it is not exact in Eσ .

In this Note we find the best possible upper estimate for the upper density of zeros of functions in Eσ .

Theorem. The upper density of zeros of a function f ∈ Eσ does not exceed cσ , where c ≈ 1.508879 is the unique
solution of the equation:

log
(√

c2 + 1 + c
) =

√
1 + c−2, on (0,+∞). (4)

For every σ > 0 there exist entire functions f ∈ Eσ such that D = cσ .

Proof. Without loss of generality we assume that σ = 1. Moreover, it is enough to consider only even functions. To
make a function f even we replace it by f (z)f (−z), which results in multiplication of both the indicator h and the
upper density D by the same factor of 2.

Let tn → +∞ be such sequence that limn(tn)/tn = D. Consider the sequence of subharmonic functions vn(z) =
t−1
n log |f (tnz)|. Compactness Principle for subharmonic functions [3, Theorem 4.1.9] implies that one can choose a

subsequence that converges in D ′ (Schwartz’s distributions). The limit function v is subharmonic in the plane, and
satisfies:

v(z) � |Im z|, z ∈ C, and v(0) = 0. (5)

Let μ be the Riesz measure of this function. We have to show that

μ
({

z: |z| � 1
})

� c. (6)

First we reduce the problem to the case that the Riesz measure μ is supported by the real line. We have

v(z) = 1

2

∫
log

∣∣∣∣1 − z2

ζ 2

∣∣∣∣dμζ .

Let us compare this with

v∗(z) = 1

2

∞∫
0

log

∣∣∣∣1 − z2

t2

∣∣∣∣dμ∗
t ,

where μ∗ is the radial projection of the measure μ: it is supported on [0,+∞) and μ∗(a, b) = μ({z: a <

|z| < b}), 0 � a < b. It is easy to see that

v∗(z) � σ ′|Im z|, z ∈ C, and v∗(0) = 0, (7)
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with some σ ′ > 0. We claim that one can choose σ ′ � 1 in (7). Let σ ′ be the smallest number for which (7) holds.
Then, by the subharmonic version of the theorem of Levinson mentioned above (see, for example, [9]), the limit

lim
r→∞ r−1v∗(rz) = σ ′|Im z|

exists in D ′ and thus

lim
r→∞

1

r

r∫
0

nv∗(t)

t
dt = lim

r→∞
1

2πr

π∫
−π

v∗(reiθ )dθ = 2σ ′

π
,

where

nv∗(r) = μ∗[0, r] = μ
{
z: |z| � r

}
. (8)

Similar limits exist for v, and we have nv = nv∗ , from which we conclude that σ ′ � 1.
From now on we assume that v is harmonic in the upper and lower half-planes, and that

v(iy) ∼ y, y → +∞. (9)

Let u be the harmonic function in the upper half-plane such that φ = u + iv is analytic, and φ(0) = 0. Then φ is a
conformal map of the upper half-plane onto some region G of the form:

G = {
x + iy: y > g(x)

}
, (10)

where g is an even upper semi-continuous function, g(0) = 0. Moreover,

φ(iy) ∼ iy, as y → +∞, (11)

which follows from (9), and

φ(−z̄) = −φ(z), (12)

because both the region G and the normalization of φ are symmetric with respect to the imaginary axis. Finally, we
have:

μ
([0, x]) = 2

π
u(x). (13)

For all these facts we refer to [7,8].

Remark. The function Reφ(x) = u(x) might be discontinuous for x ∈ R. We agree to understand u(x) as the limit
from the right u(x + 0) which always exists since u is increasing.

Inequality (5) implies that v(x) � 0, thus g(x) � 0, in other words, G contains the upper half-plane.
Thus we obtain the following extremal problem: Among all univalent analytic functions φ satisfying (12) and

mapping the upper half-plane onto regions of the form (10) with g � 0, g(0) = 0 and satisfying φ(0) = 0 and (11),
maximize Reφ(1).

We claim that the extremal function g for this problem is:

g0(x) =
{−∞, 0 < |x| < πc/2,

0, otherwise,

where c > 1 is the solution of Eq. (4). The corresponding region is shown in Fig. 1. For the extremal function we have
φ0(1) = πc/2 − i∞.

To prove the claim, we first notice that for a given G the mapping function is uniquely defined. Let a = φ(1), and
b = Rea. Next we show that making g smaller on the interval (0, b) results in increasing Reφ(1) and for g larger
on the interval (b,+∞) also results in increasing Reφ(1). The proofs of both statements are similar. Suppose that
g1 � g, g1 	= g, and g1(x) = g(x) outside of the two intervals p < |x| < q , where 0 < p < q < b. Let G1 be the
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Fig. 1. Extremal region.

region above the graph of g1, and φ1 the corresponding mapping function normalized in the same way as g. Then
G ⊂ G1, and the conformal map φ−1

1 ◦ φ is defined in the upper half-plane and maps it into itself. We have:

φ−1
1 ◦ φ(x) = x + 2x

∞∫
0

w(t)

t2 − x2
dt,

where w 	= 0 is a non-negative function supported on some interval inside (0,1). Putting x = 1 we obtain:

φ−1
1 (a) = 1 + 2

∞∫
0

w(t)

t2 − 1
dt,

so φ−1
1 (a) < 1, that is Reφ1(1) > b. This proves our claim.

It remains to compute the constant b in the extremal domain. We recall that φ0(1) = b − i∞ and assume that
b = φ0(k) for some k > 1. Here φ0 is the extremal mapping function. Then by the Schwarz–Christoffel formula we
have:

φ0(z) = 1

2

z2∫
0

√
ζ − k2

ζ − 1
dζ. (14)

To find k, we use the condition that

Imp.v.

k2∫
0

√
ζ − k2

ζ − 1
dζ = 0.

Denoting c = √
k2 − 1 and evaluating the integral, we obtain

log
(√

c2 + 1 + c
) =

√
1 + c−2.

Finally the jump of the real part of the integral in (14) occurs at the point 1 and has magnitude π
√

k2 − 1 = πc. This
completes the proof of the upper estimate in Theorem 1.

To construct an example showing that this estimate can be attained, we follow the construction in [2, Sections 9–10].
The role of the subharmonic function u1 there is played now by our extremal function v0 = Imφ0. �
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