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Abstract

Let f be an entire function of the exponential type, such that the indicator diagram is in [—io, io ], 0 > 0. Then the upper density
of f is bounded by co, where ¢ ~ 1.508879 is the unique solution of the equation

log(vVe2+1+¢)=vV1+c 2.

This bound is optimal. 7o cite this article: A. Eremenko, P. Yuditskii, C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
Résumé

Un probléme extrémal pour une classe de fonctions entiéres. Soit f une fonction entiere d’indicatrice contenue dans I’inter-
valle [—io, ic], o > 0. Alors la borne supérieure des zéros de f ne dépasse pas co, ou ¢ &~ 1,508879 est la solution d’équation,

log(vVe2+1+¢)=vV1+c2

Cette borne est exacte. Pour citer cet article : A. Eremenko, P. Yuditskii, C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

We consider the class E,, o > 0 of entire functions of exponential type whose indicator diagram is contained in a
segment [—io, io'], which means that

1 i0
1) = limsup &L ol 01 < 1)

r—-+00 r

An alternative characterization of such functions follows from a theorem of P6lya [6]:
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where F is an analytic function in C \ [—0, 0], F(c0) =0, and y is a closed contour going once around the segment
[—o, o]. In other words, the class of entire functions satisfying (1) are Fourier transforms of hyperfunctions supported
by [—o, o], see, for example, [2] and [3].
Let n(r) be the number of zeros of f in the disc {z: |z| < r}, counting multiplicity. We are interested in the upper
density:
D =limsup @ 2)
r—00 r
If f satisfies the additional condition:
o
/ log™ | f (x)]

1 +x2 dx < oo, (3)

—00

then the limit (density) in (2) exists and equals Qn)~! ffn h(6)d6. For example, if f(z) =sinoz, then f € E, and
D =20/m ~ 0.63660. The existence of the limit follows from a theorem of Levinson [5,6]. Much more precise
information about n(r) under the condition (3) is contained in the theorem of Beurling and Malliavin [1].

In the general case, the density might not exist as was shown by examples in [4,10]. Moreover, it is possible that
D > 20/m, see [2]. An easy estimate using Jensen’s formula gives D < 2ec/m ~ 1.73050 . This estimate is exact in
the larger class of entire functions satisfying the condition 4(6) < o, but it is not exact in E, .

In this Note we find the best possible upper estimate for the upper density of zeros of functions in E,.

Theorem. The upper density of zeros of a function f € E, does not exceed co, where ¢ ~ 1.508879 is the unique
solution of the equation:

log(vVc24+1+c¢)=v1+c2, on(0,+00). 4)

For every o > 0 there exist entire functions f € Es such that D = co.

Proof. Without loss of generality we assume that o = 1. Moreover, it is enough to consider only even functions. To
make a function f even we replace it by f(z) f(—z), which results in multiplication of both the indicator # and the
upper density D by the same factor of 2.

Let t, — 00 be such sequence that limn(#,)/t, = D. Consider the sequence of subharmonic functions v, (z) =
t.og| f(t,z)|. Compactness Principle for subharmonic functions [3, Theorem 4.1.9] implies that one can choose a
subsequence that converges in D’ (Schwartz’s distributions). The limit function v is subharmonic in the plane, and
satisfies:

v(z) <|[Imz|, zeC, and v(0)=0. 5
Let 1 be the Riesz measure of this function. We have to show that
n({z: 121 < 1)) <e. (6)

First we reduce the problem to the case that the Riesz measure u is supported by the real line. We have

v(z):lflog 1-— i due.
2 ;2
Let us compare this with
1T 2
v*(z)=5/10g 1= duy,
0

where p* is the radial projection of the measure w: it is supported on [0, +00) and u*(a,b) = u({z: a <
|z| <b}), 0<a <b. Itis easy to see that

v*(z) <o'llmz|, ze€C, and v*(0)=0, (7
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with some o’ > 0. We claim that one can choose o’ < 1 in (7). Let o’ be the smallest number for which (7) holds.
Then, by the subharmonic version of the theorem of Levinson mentioned above (see, for example, [9]), the limit

lim r~'v*(rz) = o’'|Imz]
r—>0o0

exists in £’ and thus

r T
1 «(t 1 . 20’
lim —fnv ()dtz lim — U*(rele)dezi’
r—>oor t r—o00 2771 T
0 -7
where
nv*(r)=ﬂ*[0,r]=u{zi |Z|<r} (8)

Similar limits exist for v, and we have n, = n,+, from which we conclude that ¢’ < 1.
From now on we assume that v is harmonic in the upper and lower half-planes, and that

v(iy)~y, y— +oo. )

Let u be the harmonic function in the upper half-plane such that ¢ = u + iv is analytic, and ¢ (0) = 0. Then ¢ is a
conformal map of the upper half-plane onto some region G of the form:

G={x+iy: y>g} (10)
where g is an even upper semi-continuous function, g(0) = 0. Moreover,

P(iy) ~iy, asy— +oo, (1)
which follows from (9), and

P(—2) =—(2), (12)

because both the region G and the normalization of ¢ are symmetric with respect to the imaginary axis. Finally, we
have:

2
u([O,x]): ;u(x). (13)

For all these facts we refer to [7,8].

Remark. The function Re ¢ (x) = u(x) might be discontinuous for x € R. We agree to understand u(x) as the limit
from the right u(x + 0) which always exists since u is increasing.

Inequality (5) implies that v(x) < 0, thus g(x) < 0, in other words, G contains the upper half-plane.

Thus we obtain the following extremal problem: Among all univalent analytic functions ¢ satisfying (12) and
mapping the upper half-plane onto regions of the form (10) with g <0, g(0) = 0 and satisfying ¢(0) =0 and (11),
maximize Re ¢ (1).

We claim that the extremal function g for this problem is:

) {—oo, 0< x| <mc/2,
X) =
80 0, otherwise,
where ¢ > 1 is the solution of Eq. (4). The corresponding region is shown in Fig. 1. For the extremal function we have
¢o(1) =mc/2 —ioco.

To prove the claim, we first notice that for a given G the mapping function is uniquely defined. Let a = ¢ (1), and
b = Rea. Next we show that making g smaller on the interval (0, b) results in increasing Re ¢ (1) and for g larger
on the interval (b, +00) also results in increasing Re ¢ (1). The proofs of both statements are similar. Suppose that
g1 <g, 81 #¢g, and g1(x) = g(x) outside of the two intervals p < |x| < g, where 0 < p < g < b. Let G be the
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-nc/2 0 mc/2

Fig. 1. Extremal region.

region above the graph of g1, and ¢; the corresponding mapping function normalized in the same way as g. Then
G C G1, and the conformal map ¢1_1 o ¢ is defined in the upper half-plane and maps it into itself. We have:

. T w)
¢1lo¢(x):x+2xfmdt,
0

where w # 0 is a non-negative function supported on some interval inside (0, 1). Putting x = 1 we obtain:

_ oow(t)
¢11(a)=1+2/t2_1dt,

0

SO ¢f1(a) < 1, thatis Re ¢ (1) > b. This proves our claim.

It remains to compute the constant b in the extremal domain. We recall that ¢o(1) = b — ico and assume that
b = ¢ (k) for some k > 1. Here ¢ is the extremal mapping function. Then by the Schwarz—Christoffel formula we
have:

— (14)

ZZ
1 — k2
m@=5fii——@.
0

To find k, we use the condition that

k2
fr — k2
Imp.v./%dgzo
0

Denoting ¢ = +/k? — 1 and evaluating the integral, we obtain
log(V2+1+c¢)=V1+c2

Finally the jump of the real part of the integral in (14) occurs at the point 1 and has magnitude w+/k? — 1 = 7c. This
completes the proof of the upper estimate in Theorem 1.

To construct an example showing that this estimate can be attained, we follow the construction in [2, Sections 9—-10].
The role of the subharmonic function u; there is played now by our extremal function vo =Im¢p. O

References

[1] A. Beurling, P. Malliavin, On Fourier transforms of measures with compact support, Acta Math. 118 (1967) 291-309.
[2] A. Eremenko, D. Novikov, Oscillation of Fourier integrals with a spectral gap, J. Math. Pures Appl. 83 (3) (2004) 313-365.
[3] L. Hormander, Analysis of Linear Partial Differential Operators, vols. I, II, Springer, Berlin, 1983.
[4] P. Kahane, L. Rubel, On Weierstrass products of zero type on the real axis, Illinois Math. J. 4 (1960) 584-592.
[5] P. Koosis, Lecons sur le théoreme de Beurling et Malliavin, Publ. CRM, Montréal, 1996.
[6] B. Levin, Distribution of Zeros of Entire Functions, Amer. Math. Soc., Providence, RI, 1980.
[7] B. Levin, Subharmonic majorants and some applications, in: Complex Analysis, Birkhduser, Basel, 1988, pp. 181-190.
[8] B. Levin, The connection of a majorant with a conformal mapping, II, Teor. Funktsii Funktional Anal. i Prilozhen. 52 (1989) 3-21 (in Russian).
English translation in: J. Soviet Math. 52 (5) (1990) 3351-3364.
[9] V. Matsaev, M. Sodin, Distribution of Hilbert transforms of measures, Geom. Funct. Anal. 10 (2000) 1, 160-184.
[10] C. Roumieu, Sur quelques extensions de la notion de distribution, Ann. Sci. Ecole Norm. Sup. 77 (1960) 41-121.



