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Abstract

If a substitution τ over a three-letter alphabet has a positively linear complexity, that is, Pτ (n) = C1n + C2 (n � 1) with
C1,C2 � 0, there are only 4 possibilities: Pτ (n) = 3, n + 2, 2n + 1 or 3n. The first three cases have been studied by many authors,
but the case 3n remained unclear. This leads us to consider the triplex substitution σ :a �→ ab, b �→ acb, c �→ acc. Studying the
factor structure of its fixed point, which is quite different from the other cases, we show that it is of complexity 3n. We remark that
the triplex substitution is also a typical example of invertible substitution over a three-letter alphabet. To cite this article: B. Tan et
al., C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Sur la substitution triplexe – propriétés combinatoires. Si une substitution τ sur un alphabet de trois lettres a une complexité
positivement linéaire, c’est-à-dire Pτ (n) = C1n + C2 (n � 1) où C1,C2 � 0, alors il n’y a que quatre possibilités : Pτ (n) = 3,
n + 2, 2n + 1 ou 3n. Les trois premiers cas ont été étudiés par différents auteurs, mais le cas 3n reste non entièrement élucidé.
Nous considérons donc la substitution triplexe σ :a �→ ab, b �→ acb, c �→ acc. Analysant la structure des facteurs de son point fixe
nous montrons que sa complexité est 3n. La substitution triplexe est un exemple typique de substitution inversible sur un alphabet
de trois lettres. Pour citer cet article : B. Tan et al., C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

Nous considérons la substitution σ = (ab, acb, acc) (c’est-à-dire, a �→ ab, b �→ acb, c �→ acc), appelée substitu-
tion triplexe. Elle a un point fixe unique ξ = ξ1ξ2ξ3 · · · = abacbabaccacb · · ·.

Le but est de démontrer que ξ a pour complexité 3n. Pour cela on analyse ses facteurs spéciaux :

Lemme 1. Pour n � 1, les facteurs suivants sont spéciaux : bσn(b)b−1, cσn(b)b−1, bσn(ab)b−1, cσn(ab)b−1,
σn−1(accab)b−1, σn(bab)b−1.
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On obtient ainsi un arbre de facteurs spéciaux (voir Fig. 1), qui démontre le :

Lemme 2. Pour k � 2, il existe au moins 3 facteurs spéciaux de longueur k.

Pour obtenir une égalité, on contrôle le nombre de facteurs spéciaux de longueur |An| :

Proposition 1. Le nombre de facteurs spéciaux de longueur |An| est au plus 3|An|.

Par une méthode d’interpolation, la proposition et les lemmes précédents nous permettent de démontrer

Théorème 1. La complexité de ξ est P(n) = 3n (n � 1).

En particulier, l’arbre de la Fig. 1 est complet : il donne tous les facteurs spéciaux de ξ . Par conséquent, le language
engendré par ξ ou σ est complètement déterminé.

1. Introduction

The study of substitutions over a finite alphabet plays an important rôle in finite automata, symbolic dynamics,
formal languages, number theory, and fractal geometry, and it has various applications to quasi-crystals, computa-
tional complexity, information theory, . . . (see [2,3,6,12] and the references therein). In addition, substitutions are
fundamental objects in combinatorial group theory [8,9].

Given a sequence ξ = ξ1ξ2ξ3 · · · over some finite alphabet A, with ξi ∈ A. We denote by Ln(ξ) the set
{ξi · · · ξi+n−1 | i � 1} of factors of ξ with length n (n � 1). The set Lξ = ⋃

n�1 Ln(ξ) is called the language of
ξ , and the function Pξ (n) := #Ln(ξ) is called the complexity of ξ .

Let A∗ be the free monoid generated by A (its identity is the empty word ε). A morphism σ :A∗ → A∗ is called a
substitution. Denote by ξσ any one of the fixed points of σ (that is σ(ξσ ) = ξσ ), if it exists.

The study of complexity and substitutions has a long history. Here are some classical results:

– Pξ (n) � n for some n if and only if ξ is ultimately periodic, and in this case the complexity is bounded [10];
– A sequence ξ over a two-letter alphabet with complexity Pξ (n) = n + 1 is called Sturmian. There are many

equivalent characterizations of Sturmian sequences (e.g., see [12,14,16]);
– Rote [13] constructed a class of sequences with complexity 2n by using graphs;
– Mossé [11] studied the case of q-automata (substitutions of constant length). A method to compute P(n) with

linear recurrence formulas was given under some technical conditions;
– Over a three-letter alphabet, a class of Tribonacci type substitutions with complexity 2n + 1 was introduced by

Arnoux and Rauzy [4].

However, the complexity of substitutions over a three-letter alphabet presents much more complex phenomena.
Few examples can be explicitly worked out, even for invertible substitutions. This is because the structure of invertible
substitutions over a three-letter alphabet is quite different from the case of substitutions over a two-letter alphabet: In
[17] we showed that the set of invertible substitutions over a three-letter alphabet is not finitely generated. Nevertheless
in [15] we were able to characterize the structure of invertible substitutions.

Now notice that for a primitive substitution, the corresponding complexity P(n) satisfies a linear inequality P(n) �
C1n+C2 (n � 1) for some positive constants C1 and C2. If we confine ourselves to the case of a three-letter alphabet,
and if the above inequality becomes equality for all n � 1, there are clearly only four possibilities: (1) P(n) = 3;
(2) P(n) = n + 2; (3) P(n) = 2n + 1; (4) P(n) = 3n. The first case is trivial (periodic), the second case (Sturmian-
like) was studied in [1]. Arnoux and Rauzy discussed the case (3) in [4]. For the case (4), as far as we know, the
existence of such substitution is not present in the literature yet! This is one of the motivations of this Note. So we
consider the substitution: σ = (ab, acb, acc), that is, a �→ ab, b �→ acb, c �→ acc. We call it the triplex substitution.

We remark that the triplex substitution, which can be seen as a representative of undecomposable invertible sub-
stitutions (remark that the inverse of σ is a �→ ab−1ab−1c, b �→ c−1ba−1b, c �→ c−1ba−1c), plays an important rôle
in the study of invertible substitutions over a three-letter alphabet [17,15]. In this Note, we show that its complexity
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is 3n, which fulfils the case (4) above. We also see that its special words and factor structure are quite different from
the Tribonacci type substitutions. We shall completely characterize the corresponding Rauzy fractal in the next Note.

2. Preliminary

Let A = {a, b, c} be a three-letter alphabet. Let A∗ stand for the free monoid generated by A.
If w ∈ A∗, we denote by |w| its length and by |w|a (resp. |w|b , |w|c) the number of occurrences of the letter a

(resp. b, c) in w. The Parikh vector of w is P(w) = (|w|a, |w|b, |w|c)t ∈ N
3.

A word v is a factor of a word w, and then we write v ≺ w, if there exist u,u′ ∈ A∗, such that w = uvu′. We say
that v is a prefix (resp. a suffix) of a word w, and then we write v � w (resp. v 	 w), if there exists u ∈ A∗ such that
w = vu (resp. w = uv). The notions of factor and prefix extend to infinite words in a natural way.

Let τ be a substitution over A. The matrix Mτ = (P (τ(a)),P (τ(b)),P (τ(c))) is called the substitution matrix
of τ . A substitution is said to be primitive if its matrix is.

If w = uv, then wv−1 := u and u−1w := v by convention.
For 0 � k < |w|, we define the kth conjugate of w by Ck(w) := xk · · ·xn−1x0x1 · · ·xk−1. We set C(w) := {Ck(w) |

0 � k < |w|}. A word w ∈ A∗ is said to be primitive if the equation w = up (p ∈ N) implies p = 1, in other words, if
all the conjugates of w are distinct (see [7]).

In the sequel, we consider the triplex substitution σ = (ab, acb, acc). Its unique fixed point is ξ = ξ1ξ2ξ3 · · · =
abacbabaccacb · · ·. For n � 0, we set An = σn(a),Bn = σn(b) and Cn = σn(c).

The lengths of words An, Bn and Cn are related to the Fibonacci numbers defined by the recurrence formula
f (n) = f (n − 1) + f (n − 2), with the initial conditions f (−2) = −1, f (−1) = 1.

Proposition 1. Let M be the substitution matrix of σ . We have:

(i) Mn =
⎡
⎣

f (2n − 1) f (2n) f (2n)

f (2n − 2) + 1 f (2n − 1) f (2n − 1) − 1
f (2n − 1) − 1 f (2n) f (2n) + 1

⎤
⎦ for n � 0;

(ii) An and Bn begin with the letter a and end with b, while Cn begins with a and ends with c (n � 1);
(iii) For n � 0, the word Bn differs from Cn by exactly their last letter, i.e., Cn = Bnb

−1c;
(iv) |An| = f (2n + 1), |Bn| = |Cn| = f (2n + 2). The words An, Bn and Cn all are primitive.

Proof. (i) holds by induction. (ii) and (iii) can be verified directly. (i) gives the first statement in (iv); the fact
gcd(|An|a, |An|b, |An|c) = 1 yields that An is primitive. Likewise, Bn and Cn are primitive. �
3. Factor structure and complexity

In this section, we consider the factors of length |An| = f (2n + 1) and the structure of special words. From this,
we determine the complexity of σ .

3.1. The factors of length |An|

Recall that ξ denotes the fixed point of σ , hence, for any n � 1,

ξ = σn(ξ) = σn(abacb · · ·) = AnBnAnCnBn · · · .
In particular, if w is a factor of ξ , so is σn(w).

Since |An| < |Bn| = |Cn|, the factors of length |An| can be divided into two classes:

Class I factors of either An, Bn or Cn.
Class II factors appearing at the concatenation of these An, Bn and Cn’s. More precisely, the factors are of the form

w = sp ≺ σn(α)σn(β) = σn(αβ), where s is a proper suffix of σn(α), p is a proper prefix of σn(β), and αβ ∈ L2
(recall that L2 stands for the set of factors of ξ of length 2).
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For the factors in Class I, we have:

(i) w = An is the only factor of An of length |An|;
(ii) Bn contains at most |Bn| − |An| + 1 factors of length |An|;

(iii) since Cn = Bnb
−1c, all the factors appearing in Cn are the same as those appearing in Bn except the last one (the

suffix of Cn of length |An|).

Now we consider Class II: let sp ∈ σn(αβ) be a word with s 	 σn(α),p � σn(β), s,p 
= ε and αβ ∈ L2.
It is readily checked that L2 = {ab, ac, ba, ca, cb, cc}. Hence we have to consider the following corresponding

sub-cases:

– AnBn, more precisely, sp ∈ AnBn, s 	 An,p � Bn, s,p 
= ε:
First notice that σk(b−1c) = b−1c (k � 0). We verify easily that Bn = Anb

−1cBn−1. This together with the
assumption p � Bn (with |p| < |An| < |Bn|) implies that p is in fact a prefix of An. Thus we have sp ≺ AnAn

(recall that |sp| = |An|), which shows that sp is a conjugate of An;
– AnCn: just the same as the above case, sp is a conjugate of An;
– BnAn: Consider the position where sp appears in

BnAn = (An−1Cn−1Bn−1)(An−1Bn−1).

If s (s � An−1Cn−1Bn−1) appears as a suffix of Bn−1 in the above representation, Bn−1 being a suffix of An (and
p is a prefix of An), we know that sp is a conjugate of An. Now we consider the other positions of the factor sp.
Since s is a proper suffix of Bn and p is a proper prefix of An−1. The number of this kind of words is at most
|An−1| − 1;

– CnAn: the factor sp satisfies that s is a proper suffix of Cn and p is a proper prefix of An. The number of this
kind of words is at most |An| − 1;

– CnBn and CnCn: whence p is also a proper prefix of An, and there are no new factors sp other than those of CnAn.

Counting out all possibilities discussed above, the number of factors of length |An| is at most

|An| +
(|Bn| − |An| + 1

) + 1 + (|An−1| − 1
) + (|An| − 1

) = 3|An|.
Up to now, we have shown the following:

Lemma 2. For n � 1, the factors on length |An| appearing in ξ are either:

– a conjugate word of An;
– a factor of Bn or Cn;
– a word of form sp with s a proper suffix of Bn and p a proper prefix of An−1;
– a word of form sp with s a proper suffix of Cn and p a proper prefix of An.

In total, the number of factors of length |An| is at most 3|An|, i.e., Pξ (|An|) � 3|An|.

3.2. Special words

The notion of “special words” is very useful for computing the complexity.
Let w be a factor of ξ and α ∈ A. If wα is also a factor of ξ , then we say that wα is a right extension (extension

for short) of w. A word is called a right special word (special word for short) of ξ if it has more than one extension.
Similarly we define “left extension” and “left special word”. Notice that a suffix of a special word is also a special
word. See [7,5] for more information.

In this subsection, we study the special words of ξ , the fixed point of the triplex substitution.
In L1 = {a, b, c}, the words a and c are special, and a has two extensions ab and ac, while c has three extensions

ca, cb and cc. In L2, there are 3 special words ac, ca and ba.
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Fig. 1. Graph of special words (the part with length between f (2n + 2) to f (2n + 4)).

Lemma 3. A factor w with |w| � 2 is special if and only if it has exactly two (right) extensions, namely wb and wc.

Proof. Since a suffix of a special factor is also a special factor, we need only check the lemma for the words of
length 2. And this is just a routine. �
Lemma 4. For n � 1, we have:

(i) both bσn(b)b−1 and cσn(b)b−1 are special; both bσn(ab)b−1 and cσn(ab)b−1 are special;
(ii) the words σn−1(accab)b−1 and σn(bab)b−1 are special.

Proof. (1) Since ab and ac are factors of ξ , AnBn and AnCn are factors also. This, together with the facts that
Cn = Bnb

−1c and that b is the last letter of An, gives that u = bσn(b)b−1 has two right extensions ub (≺ AnBn) and
uc (≺ AnCn), and thus it is special. Likewise, by considering the factors cb and cc, we can show the word cσn(b)b−1

is special.
Then considering the factor pairs {cab, cac} and {bab, bac}, we can show similarly that both cσn(ab)b−1 and

bσn(ab)b−1 are special.
(2) Since both accab ≺ σ 3(c) and accac ≺ σ 2(c) are factors, σn−1(accab)b−1 is special; since both bab and bac

are factors, σn(bab)b−1 is special. �
For more characteristics of the special words, see Remark 7 and Proposition 8.
Since any suffix of a special word is also special, the set of special words can be viewed as an infinite tree, with an

edge from w to its left extension αw if αw is special. From Lemma 4, we can get the “partial tree” shown in Fig. 1 of
special factors with length between f (2n + 2) to f (2n + 4) (in the tree, many evident nodes on the path indicated by
broken lines are omitted).

Let us remark that the special words are aligned vertically according to their lengths in Fig. 1. The following lemma
is then clear:

Lemma 5. For k � 2, there are at least 3 special factors of length k.

3.3. Complexity

Theorem 6. The complexity of ξ is P(n) = 3n for n � 1.

Proof. It is clear that P(1) = 3 and P(2) = 6. It suffices to show that P(n + 1) − P(n) = 3 (n � 2).
By Lemma 5, P(k + 1)−P(k) � 3 for all k � 2. If P(k0 + 1)−P(k0) > 3 for some k0, then P(n) > 3n whenever

n > k0. In particular P(|An|) > 3|An| when |An| > k0, which contradicts Lemma 2. �
Remark 7. The above theorem implies that there are exact three special words of length n � 2. Hence Fig. 1 presents
all the special words of length between f (2n + 2) and f (2n + 4) (of course, do not ignore the omitted nodes).



818 B. Tan et al. / C. R. Acad. Sci. Paris, Ser. I 346 (2008) 813–818
The following concept is useful to determine the complexity of substitutive sequences:

Definition 1. Let w be a special word of ξ . If w has exactly k left extensions which are special words, we say that w

is a k-special word.

By the above remark (and from Fig. 1) we have the following:

Proposition 8. The special words σn(b)b−1 and σn(ab)b−1 are 2-special; σn−1(accab)b−1 and σn(bab)b−1 are
0-special; all other special words in the tree (Fig. 1) are 1-special.

We end this note by giving a classes of substitutions with complexity 3n (moreover they share the same language
with the triplex substitution), of which the proof is easy and omitted:

Proposition 9. Let τ be the conjugate of the triplex substitution σ , i.e., τ = (ba, cba, cca), and σ (m) = σm ◦ · · · ◦ σ1
with σi ∈ {σ, τ }, 1 � i � m. Suppose that ξ ′ is any one of the accumulation points of {σ (m)(α)}m�1, α ∈ A, then the
complexity of the sequence ξ ′ is Pξ ′(n) = 3n (n � 1).
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