
C. R. Acad. Sci. Paris, Ser. I 346 (2008) 749–752
http://france.elsevier.com/direct/CRASS1/

Functional Analysis
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Abstract

The Szegő and Avram–Parter theorems give the limit of the arithmetic mean of the values of certain test functions at the eigenval-
ues of Hermitian Toeplitz matrices and the singular values of arbitrary Toeplitz matrices, respectively, as the matrix dimension goes
to infinity. We show that, surprisingly, these theorems are not true for every continuous, nonnegative, and monotonously increasing
test function and thus do not hold whenever they make sense. On the other hand, we prove the two theorems in a general form
which includes all versions known so far. To cite this article: A. Böttcher et al., C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Les théorèmes de Szegő et d’Avram–Parter pour des fonctions test générales. Les théorèmes de Szegő et d’Avram–Parter
donnent la limite de la moyenne arithmetique des valeurs d’une ‘bonne’ fonction test prise en les valeurs propres de matrices de
Toeplitz hermitiennes et en les valeurs singulières de matrices de Toeplitz arbitraires quand la dimension de la matrice tend vers
l’infini. Nous montrons que, de manière surprenante, ces théorèmes ne sont pas valables pour une fonction test continue, positive
et croissante arbitraire, alors même que leur énoncé a bien un sens. En revanche, nous prouvons les deux théorémes sous une forme
générale qui inclut toutes les versions connues jusqu’ici. Pour citer cet article : A. Böttcher et al., C. R. Acad. Sci. Paris, Ser. I
346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

The n × n Toeplitz matrix Tn(a) generated by a complex-valued function a in L1 := L1(0,2π) is the matrix
(aj−k)

n
j,k=1 where a� = ∫ 2π

0 a(θ)e−i�θ dθ
2π

is the �th Fourier coefficient of a. If a is real-valued, then the matrices
Tn(a) are all Hermitian and theorems of the Szegő type say that, under certain conditions,
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where λ
(n)
1 � · · · � λ

(n)
n are the eigenvalues of Tn(a). Theorems of the Avram–Parter type do not require that a be

real-valued. They state that, again under appropriate assumptions,
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where, this time, s
(n)
1 � · · · � s

(n)
n is the singular values of Tn(a), that is, the nonnegative square roots of the eigenval-

ues of Tn(a)Tn(a).
The functions G and F in (1) and (2) are referred to as test functions, and we will always assume that G is

nonnegative and continuous on R, G ∈ C+(R), and that F is nonnegative and continuous on [0,∞), F ∈ C+[0,∞).
Serra Capizzano [4] solved the problem of characterizing the maximal class of test functions for which (1) and (2) hold
under the assumption that both sides of (1) and (2) are finite. He showed that this happens for all a ∈ Lp (p � 1) if
and only if G(λ) = O(|λ|p) as |λ| → ∞ and F(s) = O(sp) as s → ∞. Here, we also admit the case where both sides
of (1) and (2) are infinite. We denote the functions under the integrals in (1) and (2) by G(a) and F(|a|), respectively.
If these functions are not in L1, the integral is given the value +∞.

Let ST denote the set of all G ∈ C+(R) for which (1) holds for all real-valued a ∈ L1 and let APT be the set of all
F ∈ C+[0,∞) such that (2) is valid for all a ∈ L1. As larger and larger subsets of ST and APT have been identified
over the years (see [2] and [4]), we are led to the question whether the Szegő and Avram–Parter theorems are true
whenever they make sense, which is equivalent to the question whether ST = C+(R) and APT = C+[0,∞). Note that
Golinskii and Ibragimov [3] proved that the so-called strong Szegő limit theorem for positive generating functions is
indeed true whenever it makes sense (see also the books [2] and [6]). In [1] we showed that the answer to our question
is negative: ST and APT are proper subsets of C+(R) and C+[0,∞), respectively.

The counterexample in [1] is highly oscillating and leaves us with the question whether ST and APT contain at
least all monotonous functions. Our first main result tells us that, surprisingly, this is not the case:

Theorem 1. There exist monotonously increasing C∞ functions in C+(R) \ ST and C+[0,∞) \ APT.

The proof of this theorem is rather sophisticated. It is based on the following construction. For k � 1, put bk =
exp(exp k2), βk = 1/bk , δk = exp(−k2). Let G be any monotonously increasing C∞ function on R which is identically
zero on (−∞,0], takes the value bk on [bk−1 +1, bk] (k � 2), and increases linearly on [bk +βk, bk +1−βk] (k � 1).
Denote by F the restriction of G to [0,∞). Define a ∈ L1 by a(θ) = bk for θ ∈ [(1 − δk)βk,βk] =: Ik (k � 1) and
a(θ) = 0 for θ ∈ [0,2π) \ (I1 ∪ I2 ∪ · · ·). It is easily seen that in the case at hand the right-hand sides of (1) and (2) are
finite. We can prove that the upper limit of (1/n)

∑
G(λ

(n)
j ) = (1/n)

∑
F(s

(n)
j ) is infinite, which implies that G /∈ ST

and F /∈ APT .
So which functions belong to ST and APT? Zamarashkin and Tyrtyshnikov [8] showed that all compactly supported

continuous functions are in ST and APT , Tilli [7] proved that the same is true if only uniform continuity is required,
and Serra Capizzano [4] observed that F is in APT if F is in C+[0,∞) and F(s) = O(s) as s → ∞. Here is our
second main result:

Theorem 2. The following are equivalent:

(i) APT contains all compactly supported functions in C+[0,∞);
(ii) APT contains all monotonously increasing and convex functions in C+[0,∞).

Since (i) is known to be true from [8], we arrive at the conclusion that (ii) is also true. Our proof of Theorem 2 is
based on a variational characterization of the sums

∑
F(s

(n)
j ) for monotonously increasing and convex functions F

which mimics the variational characterization of unitarily invariant matrix norms given in [5]. To be more precise, we
can prove the following:

Lemma 3. Let F ∈ C+[0,∞) and n � 2. Then the following are equivalent:

(i) F is monotonously increasing and convex;
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(ii) for every matrix A ∈ Cn×n we have
n∑

j=1

F
(
s
(n)
j

) = max
n∑
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F
(∣∣〈Auk, vk〉

∣∣),

where s
(n)
1 � · · · � s

(n)
n are the singular values of A and the maximum is over all pairs {u1, . . . , un} and

{v1, . . . , vn} of orthonormal bases of Cn with the standard inner product 〈·, ·〉.

Using Lemma 3 we get the following inequality, which for F(s) = sp (1 � p < ∞) was already established in [4]
and [5] and which plays a key role in the proof of Theorem 2:

Lemma 4. If a ∈ L1 and if F ∈ C+[0,∞) is monotonously increasing and convex, then
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)
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2π∫

0

F
(∣∣a(θ)

∣∣) dθ

2π

for all n � 1.

Theorem 2, in conjunction with additional analysis, yields the following two theorems. For Φ(s) = Csp

(1 � p < ∞), part (a) of Theorem 5 is due to Serra Capizzano [4]. Our proof of Theorem 5 is based on ideas of
[4] as well.

Theorem 5.

(a) Let a ∈ L1, let Φ ∈ C+[0,∞) be a monotonously increasing and convex function, and suppose Φ(|a|) ∈ L1. If
F ∈ C+[0,∞) is any function such that F(s) � Φ(s) for all sufficiently large s > 0, then (2) holds.

(b) Let a ∈ L1 be real-valued, put a+ = max(a,0), a− = max(−a,0), let Φ± ∈ C+[0,∞) be monotonously increas-
ing and convex functions such that Φ−(0) = Φ+(0), and suppose Φ+(a+) and Φ−(a−) are in L1. If G ∈ C+(R)

satisfies G(λ) � Φ+(λ) and G(−λ) � Φ−(λ) for all sufficiently large λ > 0, then (1) is valid.

We write H(x) � Φ(x) as x → ∞ if there exist two positive constants c1, c2 such that c1Φ(x) � H(x) � c2Φ(x)

for all sufficiently large x > 0.

Theorem 6.

(a) If F ∈ C+[0,∞) and F(s) � Φ(s) as s → ∞ for some convex function Φ ∈ C+[0,∞), then F ∈ APT.
(b) If G ∈ C+(R) and if there exist two convex functions Φ± ∈ C+[0,∞) such that G(λ) � Φ+(λ) as λ → ∞ and

G(−λ) � Φ−(λ) as λ → ∞, then G ∈ ST.

In short, the Szegő and Avram–Parter theorems are always true for essentially convex test functions. Note that
monotonicity is no longer required.
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