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Abstract

‘We bound the value of the Casson invariant of any integral homology 3-sphere M by a constant times the distance-squared to
the identity, measured in any word metric on the Torelli group Z, of the element of 7 associated to any Heegaard splitting of M.
We construct examples which show this bound is asymptotically sharp. 7o cite this article: N. Broaddus et al., C. R. Acad. Sci.
Paris, Ser. I 345 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

L’invariant de Casson et la métrique des mots sur le groupe de Torelli. Soit M une sphére d’homologie de dimension 3.
Tout scindement de Heegaard de M définit un élément du groupe de Torelli Z. Nous montrons que I’invariant de Casson de M est
borné par une constante fois le carré de la longueur de cet élément. Cette longueur est définie comme la longueur minimale d’un
mot le représentant, écrit en utilisant un systeéme générateur fini quelconque de Z. Nous construisons des exemples qui montrent
que cette borne est asymptotiquement la meilleure possible. Pour citer cet article : N. Broaddus et al., C. R. Acad. Sci. Paris, Ser. I
345 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The Casson invariant .(M) € Z is a fundamental and well-studied invariant of integral homology 3-spheres M.
Roughly speaking, A(M) is half the algebraic number of conjugacy classes of irreducible representations of 1 (M)
into SU(2). See [1] for a thorough exposition of the Casson invariant.

The mapping class group Mod, of a closed, orientable, genus g surface X is the group of homotopy classes
of orientation-preserving homeomorphisms of X,. The subgroup of Mod, consisting of elements acting trivially on
Hi(Xg; Z) is called the Torelli group, and is denoted by Z,.

Let M be an integral homology 3-sphere, and let f: X, — M be a Heegaard embedding. For any ¢ € Z,, denote
by My the homology 3-sphere obtained by cutting M along f(X,) and gluing back the resulting two handlebodies
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M™ and M~ along their boundaries via the homeomorphism ¢. Note that any integral homology 3-sphere can be
obtained from M = 3 in this way.

In this Note we give a sharp asymptotic bound on |[A(Mgy)| in terms of the word metric on Z,. To explain our result,
we fix g > 2 and pick once and for all a finite set S of generators for Z; the fact that 7, is finitely generated when
g > 2 is a deep result of D. Johnson (see [3]). Denote by || - || the induced word norm on Z,; i.e. ||@|| is the length
of the shortest word in S*! which equals ¢. Different choices of finite generating sets for 1, give word norms whose
ratios are bounded by a constant. For a fixed Heegaard embedding f: X, — M, Morita [5] has defined a kind of
normalized Casson invariant Ay : L, — Z via

Ap () := A(My) — A(M).

In particular, if M = S and h : Ye—> S 3 is the unique genus g Heegaard embedding then A(S3) = 0, so the normalized
Casson invariant A, satisfies Ay, (¢) = )»(S;).

Theorem 1. Let M be an oriented integral homology 3-sphere, let g > 2, and let f: Xy — M be a Heegaard embed-
ding. Then there exists a constant C > 0 so that |1 ¢ (¢)| < Cllg||* for every ¢ € Z,. This bound is sharp in the sense
that there exists an infinite set {¢,} C I, and a constant K > 0 so that |A f(¢n)| 2 K| ¢y |2 for all n.

For the case g = 2, the Torelli group Z, is not finitely generated [4].
2. Morita’s formula

Our proof of Theorem 1 relies in an essential way on a beautiful formula due to Morita [5] for A r(¢), which
we now explain (following §4 of [5]). This formula measures the extent to which A ¢ fails to be a homomorphism.
This failure is encoded as a function §7 : Z, x T, — Z defined as follows. Let Z, | denote the Torelli group of
an oriented, genus g surface with one boundary component X, 1. In other words, Z, 1 is the group of homotopy
classes of orientation-preserving homeomorphisms of X, | which fix the boundary pointwise, modulo homotopies
which do the same and where the homeomorphisms act trivially on H :=H{(X,; Z). Gluing a disc to d X, 1 induces
a natural surjective homomorphism 7 :Z, 1 — I, and there is a corresponding commutative diagram of Johnson
homomorphisms (cf. [2] for discussions of these homomorphisms 7 and their remarkable properties):

Zes——A3H
T,—">A*H/H.

The map f: X, — M induces homomorphisms H — H; (M *, 7Z) whose kernels we denote by H* and H ~, respec-
tively. It is then easy to see that H™ @ R and H~ ® R are maximal isotropic subspaces of the symplectic vector space
H ® R, and that

H=H"®H .
Moreover, since M is an integral homology 3-sphere, there is a symplectic basis {x1, ..., xg, y1,..., yg} for H with

x; € H and y; € H™. Now, given any two ¢, ¥ € Zg, choose any lifts ¢~), 1]/ to Z, 1. Using the obvious basis for ASH
coming from our choice of basis for H, we can write

(p) = |: Z Qjjk i NYj A yki| + other terms,

i<j<k
T(¥) = |: Z bijk Xi NX; /\xk] + other terms
i<j<k
for some a;ji, b;jx € Z. Morita defines

Sr(d, ) = Z aijibiji

i<j<k
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and proves that § (¢, ) does not depend on either the choice of lifts &, ¥ or the choice of symplectic basis for H.
Morita then proves, as Theorem 4.3 of [5], that the following formula holds for all ¢, ¥ € Z,:

Ap(@Y) =Ap (@) +Ap(Y) +28 (e, ). (D
3. Proof of Theorem 1

Let {x1,...,Xg, Y1,..., yg} be the standard basis for H := H;(X,; Z) discussed in the previous section. For any
vector v € A3H, we denote by £(v) the maximum of the absolute values of the coefficients of v with respect to the
induced basis for A3H.

We want to relate A y(¢) to the word length of ¢ in Zg, but Morita’s formula (1) is computed using elements of
Z .1, not of Z,. To address this point, we first recall that gluing a disk to d X; 1 induces an exact sequence

1= 7(T'Zy) > T STy — 1

where T! X, is the unit tangent bundle of X, . For each generator s € S of Z,, choose a single lift 5 € Z, 1, and denote
by S the union of these elements. We can then choose as a generating set for Z,,1 the set S together with a finite
generating set for 1 (7' X o). With these choices of generating sets, we note that each ¢ € 7, has some lift @ so that

Igllz,, = oz, )

This equality follows by writing out ¢ as a product of elements of S, then lifting generator by generator. Henceforth
whenever we choose a lift of an element ¢ € Z,, we will always choose a lift  satisfying (2). The main point is that
in computing with (1), we are allowed to choose any lifts, since Morita proves that § £ (¢, ¥) does not depend on the
choice of lifts. Thus we can choose lifts which do not alter word length.

Now since S is finite, there exists Cp so that

((r(®) <Cr foralls e St (3)
Since T is a homomorphism to the abelian group A3 H, it follows from (3) that
((r(@) < Ciligll forall ¢ €Ty ;. @)

Finally, consider ¢, ¥ € I, together with lifts ¢3, 1} satisfying (2). If a; jx (resp. b; i) are the coordinates of ‘L’(¢~)) (resp.
‘L’(IZ/)) as in the previous section, then

Z a;jkbijr| <

i<j<k

187(p, )| =

> E(r@))E(r(&))‘ < Y gl < Callglliv | )
i<j<k i<j<k
where Cp = (23g)Cf.
Now given any ¢ € Z,, write ¢ = s1 - - - 5, Where each s; is an element of
of Morita’s formula (1) gives

Ap(P) = Ap(s1) +Ap(sa---sp) +287(s1, 82+ 5n)
= Ap(sy) +Ap(s2) +Ap(s3--50) +28 (51,52 -85n) +285(52, 53+ 5p)

S*! and where n = ||¢||. An iterated use

n—1

=) Aplsm)+2) 85 (sissit1---sn). 6)

i=1 i=1
Since S is finite, there exists C3 > 0 so that |A ¢(s)| < C3 for every s € S. For some C > 0, we thus have

n—1

n n—1
@) <D [hplsnd)| +2 185 Givsivr-s)| <Can+2) Ca-1-(n—i) <Cn® =C|o|*.

i=1 i=1 i=1

The first claim of the theorem follows.
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We now consider the second claim. Johnson proved (see, e.g. [2]) that the homomorphisms t are surjective. Hence
there exists some v € Z, so that for some lift Ve Z,,1 we have
T()=X1 AX2 AX3+ Y1 AY2A Y3,
and hence
(V") =n(x1 Ax2 Ax3) +n(y1 A y2 A y3). (7

Note that the choice of v depends in a nontrivial way on the Heegaard embedding f : X, — M, so v is not given
explicitly. By Eq. (6), we have

n n—1
A" =D "hp W) +2) 8w "), (8)

i=1 i=1

Now let K1 = |A7(v)|, which is a constant since v is fixed. By (7) and the definition of § s, we have for any m > 0
that § 7 (v, V") = m. Thus by Eq. (8) there is some N such that for all n >> N we have

n n—1 n—1 n
M=) ) +2> (=) =2) (n—i)— > Ki>Km®

i=1 i=1 i=1 i=1

for some K7 > 0. If ||v|| = K3, then clearly ||[v"|| < K3n. Thus

K
™| = Kon® > K—inu"nz foralln > N.
3

Setting K = K3/ 1(32 we get the desired infinite set {v" | n > N} C Z, establishing the asymptotic tightness of the
upper bound.
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