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Abstract

In this Note we consider the Jacobi–Davidson method applied to a nonsymmetric generalized eigenproblem. We analyze the
convergence behavior of the method when the linear systems involved, known as the correction equations, are solved approximately.
Our analysis also exhibits quadratic convergence when the corrections are solved exactly. To cite this article: G. Hechme, C. R.
Acad. Sci. Paris, Ser. I 345 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Sur la convergence de la méthode de Jacobi–Davidson appliquée à un problème aux valeurs propres généralisé. Dans
cette Note, la méthode de Jacobi–Davidson appliquée à un problème aux valeurs propres généralisé non symétrique est considérée.
Nous analysons la convergence de la méthode quand les systèmes linéaires mis en jeu, plus connus sous le nom d’équations de
correction, sont résolus approximativement. Notre analyse montre également la convergence quadratique de la méthode pour des
solutions exactes de la correction. Pour citer cet article : G. Hechme, C. R. Acad. Sci. Paris, Ser. I 345 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

We consider the computation of the eigenvalue with largest real part and the associated eigenvector of a generalized
eigenproblem of order n + m

Ax = λBx, (1)

where B = (
In 0
0 0

)
.

Such an eigenproblem arises in particular, in the linear stability analysis of differential and algebraic system of
equations (DAE). For instance, after spatial discretization, hydrodynamic models [2] lead to a DAE of the following
form:
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⎧⎨
⎩

dv

dt
= F(v) − Gp, GTv = 0;

v(0) = v0, p(0) = p0.

In this framework,

A =
(

J −G

GT 0

)
, x =

(
v

p

)
,

where v ∈ R
n and p ∈ R

m are the velocity and the pressure, F is a quadratic function in v and G ∈ R
n×m is a matrix

of rank m. The matrix J ∈ R
n×n is the Jacobian matrix of F computed at a steady state of the DAE.

Several approaches for the solution of the eigenproblem (1) can be used, mainly, the Shift-and-Invert Arnoldi
method [3] and the Jacobi–Davidson method [4]. The first requires a judicious choice of the approximation of the
sought after eigenpair (λ, x), as well as the exact solution of a linear system of order n + m. The latter can be pro-
hibitive when n + m is large. Such drawbacks do not occur with the Jacobi–Davidson method (JD). The method

constructs a sequence (λk, xk) such that x∗
k Bxk �= 0 and λk = x∗

k Axk

x∗
k Bxk

, that converges to (λ, x) under suitable assump-

tions. Each iteration k requires the approximate solution of the equation below, known as the correction equation [4]⎧⎪⎨
⎪⎩

(
I − Bxkx

∗
k

x∗
k Bxk

)
(A − λkB)tk = −(A − λkB)xk,

x∗
k tk = 0.

(2)

The approximation xk+1 is then constructed as a linear combination of x1 and of the vectors t1, . . . , tk . The existence
and uniqueness of the system’s solution is analyzed hereafter.

In the sequel we give the main results on the convergence analysis of the Jacobi–Davidson method which is proved
in detail in [1]. The convergence is based on an estimation of the angle between the eigenvector x and the particular
combination xk + tk . In order to carry out the analysis, we investigate the method through one iteration. For ease of
presentation, we set x̂ = xk and λ̂ = λk .

2. Properties of the correction equation

Consider (λ̂, x̂) the current approximation of a given finite eigenpair (λ, x) of eigenproblem (1). We seek to com-
pute a correction (ν, t) of (λ̂, x̂), with t orthogonal to x̂, such that

αx = x̂ + t, λ = λ̂ + ν with α �= 0.

In other words,

A(x̂ + t) = (λ̂ + ν)B(x̂ + t). (3)

Assume that ‖x̂‖2 = ‖x‖2 = 1, and x̂∗Bx �= 0. Equality (3) enables us to write:

ν = x̂∗(A − λ̂B)(x̂ + t)

x̂∗B(x̂ + t)
= x̂∗(A − λ̂B)t

x̂∗B(x̂ + t)
.

Substituting ν by its value in (3) and multiplying on the left by the projection operator ( I−Bx̂x̂∗
x̂∗Bx̂

) yields the following
nonlinear equation(

I − Bx̂x̂∗

x̂∗Bx̂

)
(A − λ̂B)t = −(A − λ̂B)x̂ + x̂∗(A − λ̂B)t (x̂∗Bx̂Bt − x̂∗BtBx̂)

α(x̂∗Bx̂)(x̂∗Bx)
. (4)

Consider {x̂}⊥ and {Bx̂}⊥ the orthogonal complement subspaces of x̂ and Bx̂, U and V the matrices whose
columns span orthonormal bases of {x̂}⊥ and {Bx̂}⊥ respectively. Let T be the linear operator defined as follows:

T : {x̂}⊥ −→ {x̂}⊥,

t −→
(

I − Bx̂x̂∗

x̂∗Bx̂

)
(A − λ̂B)t.

Denote by Λ{A,B} the set of eigenvalues of the matrix pair (A,B), by tquad the solution of Eq. (4). In the following,
we give conditions for existence and uniqueness of tquad:
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Theorem 2.1. If

λ̂ /∈ Λ
{
V TAU,V TBU

}
(5)

then the operator T is nonsingular. Furthermore, if

‖(A − λ̂B)x̂‖2‖A − λ̂B‖2

α|x̂∗Bx̂||x̂∗Bx| �
σ 2

min(T )

8
(6)

then there exists a unique vector tquad ∈ {x̂}⊥ that solves (4). In addition, tquad satisfies

‖tquad‖2 = tan θ(x,x̂) and ‖tquad‖2 � 2
‖(A − λ̂B)x̂‖2

σmin(T )
,

where θ(x,x̂) is the angle between x and x̂, and σmin(T ) denotes the smallest singular value of T .

It is straightforward to see that if the last term of (4) is omitted, we obtain a linear equation which we recognize
as the Jacobi–Davidson correction equation (2). Denote by tlin the solution of (2), the norm of the difference between
tquad and tlin represents the error due to the linearization of (4). An upper bound is given in the proposition below:

Proposition 2.2. Under hypothesis (5) and (6), we have that:

‖tquad − tlin‖2 �
2‖A − λ̂B‖2‖tquad‖2

2

α|x̂∗Bx̂||x̂∗Bx|σmin(T )
.

Theorem 2.1 shows, in particular, that when the angle between the eigenvector x and the approximation x̂ is small,
the vector tquad has small components. Hence, according to Proposition 2.2, the error resulting from the linearization
of (4) is small.

Remark 1. If λ̂ ∈ Λ{V TAU,V TBU}, the eigenvalue λ is possibly multiple and a block version of Jacobi–Davidson
should be used.

3. Convergence estimates

In general, JD is applied to large sparse eigenproblems, and the exact solution of (2) can be extremely expensive to
obtain numerically. Therefore, an approximation tapp ∈ {x̂}⊥ of tlin is computed. We assume that

‖tlin − tapp‖2 � β‖tlin‖2 with 0 < β < 1. (7)

An iterative solver such as GMRES combined with an ad hoc preconditioner can be expected to give an approximate
solution satisfying the assumption above (see [1]).

The next theorems provide some insight about the evolution of the approximation computed by JD with respect to
the exact eigenvector x.

Theorem 3.1. Under assumptions (5), (6) and (7) we have

sin θ(x,x̂+tapp) �
(

(1 + β)
2‖A − λ̂B‖2 tan θ(x,x̂)

α|x̂∗Bx̂||x̂∗Bx|σmin(T )
+ β

)
sin θ(x,x̂). (8)

Thus, if σmin(T ) is large and θ(x,x̂) is small, then

sin θ(x,x̂+tapp) = O
(
sin2 θ(x,x̂)

) +O(β sin θ(x,x̂)).

In particular, if (2) is solved exactly, then β = 0 and we clearly see that quadratic convergence occurs.
A variant of Theorem 3.1 can be derived using a weaker assumption on the approximate solution tapp. We simply

consider that tapp is computed by an iterative method with a tolerance γ , i.e.∥∥T (tapp) + (A − λ̂B)x̂
∥∥

2 � γ
∥∥(A − λ̂B)x̂

∥∥
2. (9)

Then we have the following theorem:
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Theorem 3.2. Under assumptions (5), (6) and (9) we have

sin θ(x,x̂+tapp) � 1

σmin(T )

(
2‖A − λ̂B‖2

α|x̂∗Bx̂||x̂∗Bx| tan θ(x,x̂) + γ

(
‖A − λB‖2 + ‖A − λ̂B‖2

α|x̂∗Bx|
))

sin θ(x,x̂). (10)

This theorem shows that faster convergence can be achieved by taking a small tolerance γ . For instance, quadratic
convergence is obtained with γ = δ‖(A − λ̂B)x̂‖2, where δ is a small scalar.

Remark 2. If the Euclidean inner product is replaced by the semi-inner product induced by the matrix B , a second
version of the Jacobi–Davidson method can be developed, for which, similar convergence results hold [1].
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