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Abstract

We use simple properties of the Rasmussen invariant of knots to study its asymptotic behaviour on the orbits of a smooth volume
preserving vector field on a compact domain of the 3-space. A comparison with the asymptotic signature allows us to prove that
asymptotic knots of non-zero invariant are non-alternating. To cite this article: S. Baader, C. R. Acad. Sci. Paris, Ser. I 345 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Invariant de Rasmussen asymptotique. Dans cette Note, nous étudions l’invariant de Rasmussen des nœuds asymptotiques
d’un champ de vecteurs préservant une mesure de probabilité sur un domaine compact de l’espace. Plus précisément, nous démon-
trons que l’invariant de Rasmussen des nœuds asymptotiques est égal au double de la signature asymptotique. Par conséquent, les
nœuds asymptotiques d’invariant non-nul sont non-alternés. La preuve présentée ici est inspirée de la technique de Gambaudo et
Ghys. Pour citer cet article : S. Baader, C. R. Acad. Sci. Paris, Ser. I 345 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The helicity of a smooth volume-preserving vector field on a closed homology 3-sphere measures how pairs of
orbits are linked asymptotically, in the average (see [1]). An asymptotic linking number for pairs of orbits does also
exist for a smooth volume-preserving vector field X on a compact domain G ⊂ R3 with smooth boundary, provided
X is tangent to the boundary ∂G. In [2], Gambaudo and Ghys proved that the asymptotic linking number can be
determined by looking at a single orbit only. More precisely, they proved the existence of an asymptotic signature
invariant that coincides with the helicity of X divided by two, for almost all orbits, provided the flow of X is ergodic.

In this Note we prove the existence of an asymptotic Rasmussen invariant, answering thereby a question posed
by Ghys in [3]. Comparing this invariant with the asymptotic signature, we show that asymptotic knots are non-
alternating, as soon as the helicity of X is non-zero. In order to state our main theorem, we have to describe how
pieces of orbits can be turned into knots: let x ∈ G be a non-periodic, non-singular point for the flow ΦX of the vector
field X. For a fixed time T > 0, we define K(T ,x) ⊂ R3 to be the piece of orbit from x to ΦX(x,T ), followed by
the geodesic segment γ joining ΦX(x,T ) to x (γ need not be contained in G). A careful exposition on the closure
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Fig. 1. Alternating knot diagram and non-alternating piece of orbit.

of pieces of orbits can be found in [8]. For almost all x ∈ G and T > 0, K(T ,x) is an embedded curve, i.e. a knot.
As usual, we denote the Rasmussen invariant and the signature of a knot K by s(K) and σ(K), respectively. We shall
review some basic properties of the Rasmussen invariant at the beginning of the next section.

Theorem 1.1. Let X be a smooth vector field on a compact domain G ⊂ R3, tangent to the boundary ∂G, with
hyperbolic singularities only, i.e. linear singularities corresponding to critical points of index 1 or 2 of a Morse
function on R3. If μ is an X-invariant probability measure which does not charge the periodic orbits and singular
points of X, then the limit

s(X,x) := lim
T →∞

1

T 2
s
(
K(T ,x)

)

exists for almost all x ∈ G (with respect to μ) and coincides with

2σ(X,x) := 2 lim
T →∞

1

T 2
σ
(
K(T ,x)

)
.

Remark 1. As Gambaudo and Ghys observed in [2], the quantity 2σ(X,x) coincides with the helicity (or Arnold
invariant) of X, for almost all x ∈ G, if the flow of X is ergodic with respect to μ, i.e. if every measurable function
which is invariant under the flow of X is constant almost everywhere.

Theorem 1.1 allows us to detect the non-alternating character of long pieces of orbits, in general. A knot or link
is called alternating, if it has an alternating planar diagram, i.e. a diagram in which we encounter the crossings in an
alternating way on an upper strand and a lower strand, as shown on the left-hand side of Fig. 1.

Corollary 1.2. If the flow of X is ergodic with respect to μ, and if, in addition, X has non-zero helicity, then for almost
all points x ∈ G, there exists a positive constant S ∈ R such that the knot K(T ,x) is non-alternating, for almost all
T � S.

As an example, let X be the constant vector field (1,ω) on S1 × S1 = R2/Z2. We can easily extend X to a non-
vanishing vector field on the full torus V = S1 ×D2, which we may view as a domain in R3. If we choose an irrational
slope ω ∈ R − Q, then the orbit starting at a point x ∈ S1 × S1 is non-periodic and shows a typical non-alternating
behaviour, as shown on the right-hand side of Fig. 1. Its asymptotic Rasmussen invariant is s(X,x) = 2σ(X,x) =

1
4π2 ω (see [2], p. 50).

Remark 2. We do not know whether the assumption of Corollary 1.2 that the helicity be non-zero is essen-
tial. However, we cannot drop both assumptions, as shows the example of the constant vector field (1,0) on
S1 × D2 = R/Z × D2, whose orbits are all periodic and unknotted.

The proof of Theorem 1.1 is based upon the notion of ‘good’ diagrams for long pieces of orbits, whose existence
was proved by Gambaudo and Ghys in [2]. We present it in the next section, together with the proof of Corollary 1.2.
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Fig. 2. Smoothing of crossings.

2. The asymptotic Rasmussen invariant

The Rasmussen invariant s of knots was constructed from the Khovanov complex of knots in [5]. Among various
interesting properties of the Rasmussen invariant, two are of special interest to us. The first one is a Bennequin-style
inequality:

s(K) � 1 + w(D) − o(D), (1)

where w(D) and o(D) stand for the writhe and the number of Seifert circles of a diagram D of K , respectively. The
writhe of a knot or link diagram, also known as the algebraic crossing number, is the number of positive crossings
minus the number of negative crossings of that diagram. The Seifert circles are those embedded circles in the plane
that arise from smoothing all the crossings of a knot or link diagram. Fig. 2 shows how to smooth a positive or negative
crossing of a diagram.

The second important property is an equality that relates the Rasmussen invariant and the signature of alternating
knots:

s(K) = σ(K), (2)

for all alternating knots K .
The first inequality was proved by Shumakovitch in [7], based upon a general principal due to Rudolph [6], the

other property appears in Rasmussen’s original paper. Applying the first inequality to the mirror image K̄ of a knot K ,
we obtain

s(K̄) � 1 + w(D̄) − o(D̄) = 1 − w(D) − o(D).

Combining this with the fact that s(K̄) = −s(K), we also get an upper bound for s(K), altogether:

1 + w(D) − o(D) � s(K) � −1 + w(D) + o(D). (3)

According to Gambaudo and Ghys [2], under the assumptions of Theorem 1.1, the complement of the singularities
of X can be covered by an enumerable family of flow boxes whose flow time (i.e. the minimal time it takes to pass
through a flow box) is bounded from below by a global constant λ > 0. Further they show that for almost all x ∈ G

and T > 0, the knots K(T ,x) have diagrams π0(K(T , x)), coming from a good projection π0 onto a plane, whose
writhe, called θ there, grows quadratic in T , more precisely:

lim
T →∞

1

T 2
w

(
π0

(
K(T ,x)

)) = 2σ(X,x). (4)

In fact, they subdivide the crossings of π0(K(T , x)) into three types ([2], p. 64): D1, D2, D3. The crossings of type
D1 arise from overcrossing flow boxes, as illustrated in Fig. 3, on the left-hand side; their number grows quadratic
in T . The number of crossings of types D2 and D3 grows subquadratic in T .

We shall estimate the number of Seifert circles o(π0(K(T , x))). Every Seifert circle of π0(K(T , x)) is adjacent to
at least one crossing, and there are at most two Seifert circles meeting at each crossing (compare Fig. 2). Therefore
the number of Seifert circles adjacent to a crossing of type D2 or D3 grows subquadratic in T . Further, every Seifert
circle which is adjacent to a crossing of type D1 must enter at least one flow box (see Fig. 3, on the right-hand side).
Therefore there are at most T

λ
such circles, where λ is the minimal flow time for flow boxes! Altogether, this shows

lim
T →∞

1

T 2
o
(
π0

(
K(T ,x)

)) = 0.

In view of (3) and (4), this proves Theorem 1.1.
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Fig. 3. Two overcrossing flow boxes.

Corollary 1.2 in turn is an immediate consequence of Theorem 1.1 and the fact that s(K) = σ(K), for all alternating
knots K . Indeed, if the vector field X is ergodic, then its helicity coincides with 2σ(X,x), for almost all x ∈ G [2].
If, in addition, the helicity is non-zero, then 2σ(X,x) �= 0 and s(X,x) = 2σ(X,x) �= σ(X,x), for almost all x ∈ G,
hence there exists a constant S � 0, such that s(K(T , x)) �= σ(K(T , x)), for almost all T � S.

Remark 3. The proof of Theorem 1.1 works for all knot invariants I that satisfy the inequality I (K) � 1 + w(D) −
o(D) and the equation I (K̄) = −I (K). This is notably the case for the invariant 2τ coming from knot Floer homol-
ogy [4].
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