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Abstract

After recalling the subject of the compression of images using a projection onto a polyhedral set (which generalizes the com-
pression by coordinate quantization), we express, in this framework, the probability that an image is coded with K coefficients as
an explicit function of the approximation error. To cite this article: F. Malgouyres, C. R. Acad. Sci. Paris, Ser. I 344 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Estimation de la loi de probabilité suivie par la longueur du code comme une fonction de l’erreur d’approximation, en
compression d’images. Après des rappels sur la compression d’images par une projection sur un polyèdre, nous explicitons, dans
ce cadre, la probabilité qu’une image soit codée par K coefficients, comme une fonction de l’erreur d’approximation. Pour citer
cet article : F. Malgouyres, C. R. Acad. Sci. Paris, Ser. I 344 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In the past twenty years, many image processing tasks have been approached using two distinct mathematical tools:
image decomposition in a basis and optimization.

The first mathematical approach has proved very useful and is supported by solid theoretical foundations: these
guarantee its efficiency, as long as the basis captures the information contained in images. Modelling the image
content by appropriate function spaces (of infinite dimension), the mathematical theory tells us how the coordinates
of an image, in a given basis, behave. For example, it is possible to characterize Besov spaces (see [12]) and the space
of bounded variation (which is ‘almost characterized’ in [3]) with wavelet coefficients. As a consequence of these
characterizations, one can obtain performance estimates for practical algorithms (see Th. 9.6, p. 386, in [11] and [5,4]
for some analyses in more complex situations). Image compression and restoration are the typical applications where
such analyses are meaningful.
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The optimization methods which have been applied to solve those practical problems have also proved very efficient
(see [13], for a very famous example). However, the theory is not able to assess how well they perform, given an image
model.

Interestingly, many in the community who were primarily involved in the image decomposition approach are now
focusing on optimization models (see, for instance, the work on Basis Pursuit [2] or compressed sensing [6]). The
main reason for this is probably that optimization provides a more general framework [1,7,8].

The framework which seems to allow both a good flexibility for practical applications (see [2] and other papers on
Basis Pursuit) and good properties for theoretical analysis is the method of projection onto polyhedra or polytopes.
For theoretical studies, it shares simple geometrical properties with the usual image decomposition models (see [10]);
this should allow the derivation of approximation results.

The aim of this Note is to state a theorem1 which relates, asymptotically as the precision grows, the approximation
error and the number of coefficients which are coded (which we abusively call codelength, for simplicity). More
precisely, when the initial datum is assumed random in a convex set, we give the probability for the datum to be coded
by K coefficients, as a function of the approximation error (see Theorem 3.1 for details).

This result is given in a framework which generalizes the usual coding of the quantized coefficients (‘non-linear
approximation’), as usually performed by compression standards (for instance, JPEG and JPEG2000).

2. Recollection on variational compression

Here, and throughout the Note, N is a positive integer, I = {1, . . . ,N} and B = (ψi)i∈I is a basis of R
N . We will

also denote, for τ > 0 (throughout the paper τ stands for a positive real number) and for all k ∈ Z, τk = τ(k − 1
2 ).

For any (ki)i∈I ∈ Z
N , we set

C
(
(ki)i∈I

) =
{∑

i∈I

uiψi,∀i ∈ I, τki
� ui � τki+1

}
. (1)

We then consider the optimization problem

(P̃ )
(
(ki)i∈I

):
{

minimize f (v)

under the constraint v ∈ C
(
(ki)i∈I

)
,

where f is a norm which is continuously differentiable away from 0 and has strictly convex level sets. In order to state
Theorem 3.1, we also need f to be curved. This means that the inverse of the homeomorphism h below2 is Lipschitz.

h :
{
u ∈ R

N, f (u) = 1
} → {

g ∈ R
N,‖g‖2 = 1

}
,

u �→ ∇f (u)

‖∇f (u)‖2
.

(The notation ‖ · ‖2 refers to the euclidean norm in R
N .)

We denote, for any (ki)i∈I ∈ Z
N ,

J̃
(
(ki)i∈I

) = {i ∈ I,u∗
i = τki

or u∗
i = τki+1},

where u∗ = ∑
i∈I u∗

i ψi is the solution to (P̃ )((ki)i∈I ).
The interest in these optimization problems comes from the fact that, as explained in [8], we can recover (ki)i∈I

from the knowledge of (J̃ , (u∗
i )j∈J̃

) (where J̃ = J̃ ((ki)i∈I )).

The problem (P̃ ) can therefore be used for compression. Given a datum u = ∑
i∈I uiψi ∈ R

N , we consider the
unique (ki(u))i∈I ∈ Z

N such that (for instance)

∀i ∈ I, τki(u) � ui < τki(u)+1. (2)

1 The theorem concerning compression in [10] is incorrect. The situation turns out to be more complex than we thought at the time that [10] was
written.

2 We prove in [10] that, under the above hypotheses, h actually is an homeomorphism.
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The information (J̃ , (u∗
i )j∈J̃

), where J̃ = J̃ ((ki(u))i∈I ), is then used to encode u. In the following, we denote the set

of indexes that need to be coded to describe u by J̃ (u) = J̃ ((ki(u))i∈I ).
Notice that we can also show (see [8]) that the coding performed by the standard image processing compression

algorithms (JPEG and JPEG2000) corresponds to the above model when, for instance,

f

(∑
i∈I

uiψi

)
=

(∑
i∈I

|ui |2
)1/2

.

Observe that the above compression scheme works for any quantization table (see [8]); we restrict to the uniform
quantization because Theorem 3.1 only applies in this context. However, several levels of generalization are possible,
if one wants to generalize it to more general quantization tables. Notice that, in the theorem, we assume that the data
belong to a given level set, denoted Lfd

(τ ′), of a norm fd . Therefore, the code attributed to each coefficient need not
to be infinite.

3. The estimate

Theorem 3.1. Let τ ′ > 0 and U be a random variable whose low is uniform in Lfd
(τ ′), for a norm fd . Assume f

satisfies the hypotheses given in Section 2. For any norm ‖ · ‖ and any K ∈ {1, . . . ,N} there exists DK such that for
all ε > 0, there exists T > 0 such that for all τ < T

P
(
#J̃ (U) = K

)
� DKE(N−K)/(N+1) + ε,

where E is the approximation error:3

E = E

(∥∥∥∥U − τ
∑
i∈I

ki(U)ψi

∥∥∥∥
)

.

Moreover, if f (
∑

i∈I uiψi) = (
∑

i∈I |ui |2)1/2, we also have4

P
(
#J̃ (U) = K

)
� DKE(N−K)/(N+1) − ε.

The proof of the above theorem is given in [9]. Its two main steps are: the characterization of all the (ki)i∈I ∈
Lfd

(τ ′) which are coded with K coefficients, for any given K ∈ {1, . . . ,N}; the census, for each K , of (ki)i∈I obtained
at the first step.

The above theorem differs from the results evoked in Section 1 in several ways.
First, it concerns variational models which are more general than the model for which the results of Section 1 are

usually stated. This is probably the main interest of the current result. For instance, by a reasoning similar to the one
used in the proof of Theorem 3.1, it is probably possible to obtain approximation results for redundant transforms.

Secondly, it expresses the distribution of the number of coefficients as a function of the approximation error,
whereas earlier results do the opposite. Typically, they bound the approximation error (quantified by the L2 norm)
by a function of the number of coefficients that are coded. The advantages and drawbacks of the different kinds of
statements are not very clear. In the framework of Theorem 3.1, the larger DK (for K small), the better the model
compresses the data. However, it is clear that, as the approximation error goes to 0, it is more and more likely to obtain
a code of size N . In this respect, the constant DN−1 seems to play an important role, since it dominates (asymptotically
as τ goes to 0) the probability not to obtain a code of length N .

Thirdly, the theorem is stated for data leaving in a finite dimension vector space and, as a consequence, it does not
impose a priori links between the data distribution (the function fd ) and the model (the function f and the basis B).
The ability of the model to represent the data is always assessed by the CK . Of course, an analogue of Theorem 3.1
for data in an infinite dimension space would be interesting.

3 When computing the approximation error, we consider the center of C((ki )i∈I ) has been chosen to represent all the elements u such that
(ki (u))i∈I = (ki )i∈I .

4 This assumption is very pessimistic. For instance, the lower bound seems to hold for almost every basis B of R
N , when f is fixed. However,

we have not worked out the details of the proof of such a statement.
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