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Abstract

Asymptotic formulae for Green’s kernels Gε(x,y) of various boundary value problems for the Laplace operator are obtained
in regularly perturbed domains and certain domains with small singular perturbations of the boundary, as ε → 0. The main new
feature of these asymptotic formulae is their uniformity with respect to the independent variables x and y. To cite this article:
V. Maz’ya, A. Movchan, C. R. Acad. Sci. Paris, Ser. I 343 (2006).
© 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Formules asymptotiques uniformes pour des noyaux de Green dans des domaines avec perturbations regulières et sin-
gulières. Des formules asymptotiques sont obtenues pour des noyaux de Green Gε(x,y) de divers problèmes aux limites pour
l’opérateur de Laplace dans des domaines régulièrement perturbés et certains domaines avec des petites perturbations singulières
du bord, quand ε → 0. Le caractère novateur de ces formules asymptotiques réside dans leur uniformité par rapport aux variables
indépendantes x et y. Pour citer cet article : V. Maz’ya, A. Movchan, C. R. Acad. Sci. Paris, Ser. I 343 (2006).
© 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Version française abrégée

Cette Note s’intéresse à la question des approximations asymptotiques uniformes des fonctions de Green pour des
domaines à la fois régulièrement et singulièrement perturbés. Tout d’abord, nous affinons l’une des formules clas-
siques d’Hadamard dans le cas d’une perturbation régulière. Puis, nous considérons plusieurs types de perturbations
singulières, notamment dans des domaines avec un nombre fini de trous, de tiges minces et un cône tronqué. Pour
ces géométries et différents types de conditions limites, nous déduisons les représentations asymptotiques uniformes
des noyaux de Green pour l’opérateur Laplacien. Les techniques utilisées dans les preuves des théorèmes du texte
principal de la Note se fondent sur la méthode des développements asymptotiques combinés, qui est discutée en détail
dans le monographie en deux tomes [4]. Les formules asymptotiques uniformes pour les noyaux de Green peuvent
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être avantageusement utilisées dans des algorithmes numériques pour résoudre des problèmes avec conditions limites,
dans des domaines avec des frontières perturbées singulièrement.

1. Introduction

In 1907, Hadamard was awarded the Prix Vaillant by the Académie des Sciences de Paris for his work [2]. Among
much else, this memoir includes investigation of Green’s kernels of some boundary value problems, and, in particular,
their dependence on a small regular perturbation of the domain. Hadamard’s asymptotic formulae played a significant
role at the dawn of functional analysis (see [3]). The list of subsequent applications includes extremal problems in the
complex function theory, a biharmonic maximum principle for hyperbolic surfaces, shape sensitivity and optimisation
analysis, free boundary problems, Brownian motion on hypersurfaces, theory of reproducing kernels. Analogues of
Hadamard’s formulae were obtained for general elliptic boundary value problems [1] and for the heat equation [5].

The issue of asymptotic formulae for Green’s kernels in singularly perturbed domains attracted less attention. In
this respect, we mention the papers [6,7], where certain estimates for Green’s functions in domains with small holes
were obtained.

An important drawback of the estimates just mentioned, which is also inherent in the classical Hadamard for-
mulae, is the non-uniformity with respect to the independent variables. The present article settles the question of
uniformity left open in earlier work, both for regularly and singularly perturbed domains. First, we sharpen one of
Hadamard’s classical formulae in the case of a regular perturbation. Next, we consider several types of singularly per-
turbed domains including domains with a finite number of holes, thin rods and a truncated cone. For these geometries
and different types of boundary conditions, we derive uniform asymptotic representations of Green’s kernels for the
Laplacian. The asymptotic formulae presented here for singularly perturbed problems involve Green’s functions and
other auxiliary solutions of certain model boundary value problems independent of ε.

The techniques used in the proofs of theorems of the main text of the paper are based on the method of compound
asymptotic expansions discussed in detail in the two-volume monograph [4]. The uniform asymptotic formulae for
Green’s kernels can be efficiently used in numerical algorithms for solving boundary value problems in domains with
singularly perturbed boundaries.

2. Uniform Hadamard’s type formula

Let Ω be a planar domain with compact closure �Ω and smooth boundary ∂Ω . Also, let another domain Ω(ε),
depending on a small positive parameter ε, lie inside Ω . By δz we denote a smooth positive function defined on ∂Ω ,
and assume that εδz is the distance between a point z ∈ ∂Ω and ∂Ωε . One of the results in Hadamard’s paper [2] is
the following formula, which relates Green’s functions G and Gε for the Dirichlet boundary value problem for the
Laplacian in Ω and Ωε:

Gε(x,y) − G(x,y) + ε

∫
∂Ω

∂G

∂νz

(x, z)
∂G

∂νz

(z,y)δz dsz = O
(
ε2). (1)

This asymptotic relation holds, in particular, when either x or y is placed at a positive distance from ∂Ω , independent
of ε. However, one can see from the simplest example of two concentric disks Ω and Ωε that (1) may fail when x
and y approach the same point at ∂Ωε . In the next theorem, we improve Hadamard’s formula by obtaining a uniform
asymptotic representation for Gε − G.

Theorem 1. Let x and y be points of �Ωε situated in a sufficiently thin neighbourhood of ∂Ω . The right-hand side in
(1) can be replaced by

1

4π
log

|z(x) − z(y)|2 + (ρx − εδz(x) + ρy − εδz(y))
2

|z(x) − z(y)|2 + (ρx + ρy)2

+ 1

2π

ε(δz(x) + δz(y))(ρx + ρy)

|z(x) − z(y)|2 + (ρx + ρy)2
+ O

(
ε2(ρx + ρy)

|z(x) − z(y)|2 + (ρx + ρy)2

)
, (2)

where z(x) is the point of ∂Ω nearest to x, ρx = |x − z(x)|, and the notations z(y), ρy have the same meaning for the
point y.



V. Maz’ya, A. Movchan / C. R. Acad. Sci. Paris, Ser. I 343 (2006) 185–190 187
We note that the principal term in (2) plays the role of a boundary layer, and when |z(x) − z(y)| < Const ε and
ρx + ρy < Const ε, it has the order O(1), whereas the remainder term has the order O(ε).

3. Dirichlet problem for a domain with a small inclusion

Let Ω and ω be bounded domains in Rn. We assume that Ω and ω contain the origin O and introduce the domain
ωε = {x: ε−1x ∈ ω}. Without loss of generality, it is assumed that the minimum distance between the origin and the
points of ∂Ω as well as the maximum distance between the origin and the points of ∂ω are equal to 1. Let Gε be
Green’s function of the Dirichlet problem for the Laplace operator in Ωε = Ω \ �ωε . We use the notation |Sn−1| for
the (n − 1)-dimensional measure of the unit sphere.

Theorem 2. Let n > 2. By G and G we denote Green’s functions of the Dirichlet problems in Ω and Rn \ �ω, respec-
tively.

Let H be the regular part of G, that is H(x,y) = ((n − 2)|Sn−1|)−1|x − y|2−n − G(x,y), and let P stand for the
harmonic capacitary potential of �ω. Then

Gε(x,y) = G(x,y) + ε2−nG
(
ε−1x, ε−1y

) − (
(n − 2)

∣∣Sn−1
∣∣)−1|x − y|2−n

+ H(0,y)P
(
ε−1x

) + H(x,0)P
(
ε−1y

) − H(0,0)P
(
ε−1x

)
P

(
ε−1y

)
− εn−2 cap�ω H(x,0)H(0,y) + O

(
εn−1

(min{|x|, |y|})n−2

)
(3)

uniformly with respect to x and y in Ωε . (Note that the remainder term in (3) is O(ε) on ∂ωε and O(εn−1) on ∂Ω .)

The next theorem contains a result of the same nature for n = 2. As before, G and G are Green’s functions for Ω

and R2 \ �ω, respectively, whereas H is the regular part of G.

Theorem 3. Let

ζ(η) = lim
|ξ |→∞

G(ξ ,η) and ζ∞ = lim|η|→∞
{
ζ(η) − (2π)−1 log |η|}.

Then the asymptotic representation, uniform with respect to x,y ∈ Ωε , holds

Gε(x,y) = G(x,y) + G
(
ε−1x, ε−1y

) + (2π)−1 log
(
ε−1|x − y|)

+ ((2π)−1 log ε + ζ( x
ε
) − ζ∞ + H(x,0))((2π)−1 log ε + ζ(

y
ε
) − ζ∞ + H(0,y))

(2π)−1 log ε + H(0,0) − ζ∞
− ζ

(
ε−1x

) − ζ
(
ε−1y

) + ζ∞ + O(ε). (4)

The next assertion is a direct consequence of (4). It shows that asymptotic representation of Gε(x,y) is simplified
if x and y are subject to additional constraints. We use the same notations as in Theorem 3.

Corollary 1. The following assertions hold:

(a) Let x and y be points of Ωε ⊂ Rn such that min{|x|, |y|} > 2ε. Then for n = 2,

Gε(x,y) − G(x,y) − G(x,0)G(0,y)

(2π)−1 log ε + H(0,0) − ζ∞
= O

(
ε

min{|x|, |y|}
)

,

and for n > 2,

Gε(x,y) − G(x,y) + εn−2 cap�ωG(x,0)G(0,y) = O

(
εn−1

(|x||y|)n−1 min{|x|, |y|}
)

.
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(b) If max{|x|, |y|} < 1/2, then for n = 2,

Gε(x,y) − G
(

x
ε
,

y
ε

)
− ζ(ε−1x)ζ(ε−1y)

(2π)−1 log ε + H(0,0) − ζ∞
= O

(
max

{|x|, |y|}),
and for n > 2,

Gε(x,y) − ε2−nG
(

x
ε
,

y
ε

)
+ H(0,0)

(
P

(
ε−1x

) − 1
)(

P
(
ε−1y

) − 1
) = O

(
max

{|x|, |y|}).
One can say that these formulae are closer, in their spirit, to Hadamard’s original formula (1) than Theorems 2

and 3 themselves. Analogous simplified formulae can be deduced easily from all other theorems of the present paper,
but they are not included here.

4. Dirichlet–Neumann problems in a planar domain with a small hole

The set Ωε is assumed to be the same as in Theorem 3, with the additional constraint that ∂ω is smooth. First, let
Gε denote the kernel of the inverse operator of the mixed boundary value problem in Ωε for the operator −�, with
the Dirichlet data on ∂Ω and the Neumann data on ∂ωε . The notations G,G and H have the same meaning as in
Theorem 3, and N is the Neumann function in R2 \ �ω. Let D be a vector function, harmonic in R2 \ �ω, vanishing at
infinity and such that ∂D/∂ν = ν on ∂ω. This vector function appears in the asymptotic representation

N (ξ ,η) ∼ (2π)−1 log |ξ |−1 + (
D(η) − η

) · ∇(
(2π)−1 log |ξ |−1), as |ξ | → ∞.

Theorem 4. The kernel Gε(x,y) of the inverse operator of the mixed boundary value problem in Ωε for the operator
−�, with the Dirichlet data on ∂Ω and the Neumann data on ∂ωε , has the following asymptotic representation, which
is uniform with respect to x,y ∈ Ωε ,

Gε(x,y) = G(x,y) +N
(
ε−1x, ε−1y

) + (2π)−1 log
(
ε−1|x − y|)

+ εD
(
ε−1x

) · ∇xH(0,y) + εD
(
ε−1y

) · ∇yH(x,0)

− ε2D
(
ε−1y

) · ((∇x ⊗ ∇y)H(0,0)
)
D

(
ε−1x

) + O
(
ε2). (5)

Next, consider the mixed boundary value problem in Ωε for the Laplace operator, with the Neumann data on the
smooth boundary ∂Ω and the Dirichlet data on ∂ωε , where ωε = {x: ε−1x ∈ ω ⊂ R2} with ω being an arbitrary
bounded domain. Let N(x,y) be the Neumann function in Ω , i.e.

�N(x,y) + δ(x − y) = 0, x,y ∈ Ω,

∂

∂νx

(
N(x,y) + (2π)−1 log |x|) = 0, x ∈ ∂Ω,y ∈ Ω,

and ∫
∂Ω

N(x,y)
∂

∂νx

log |x|dsx = 0,

with the last condition implying the symmetry of N(x,y). The regular part of the Neumann function is defined by

R(x,y) = (2π)−1 log |x − y|−1 − N(x,y).

Note that

R(0,y) = −(2π)−2
∫

∂Ω

log |x| ∂

∂ν
log |x|dsx.

Let D be a vector function, harmonic in R2 \ �ω, bounded at infinity and subject to the Dirichlet condition D(ξ) = ξ ,

ξ ∈ ∂ω. This vector function appears in the asymptotic representation of Green’s function in R2 \ �ω
G(ξ ,η) ∼ G(∞,η) + (

D(η) − η
) · ∇(

(2π)−1 log |ξ |−1), as |ξ | → ∞.
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Theorem 5. The function Gε(x,y) has the asymptotic behaviour, uniform with respect to x,y ∈ Ωε:

Gε(x,y) = G
(
ε−1x, ε−1y

) + N(x,y) − (2π)−1 log |x − y|−1 + R(0,0)

+ εD
(
ε−1y

) · ∇yR(x,0) + εD
(
ε−1x

) · ∇xR(0,y)

− ε2D
(
ε−1y

) · (((∇x ⊗ ∇y)R
)
(0,0)

)
D

(
ε−1x

) + O
(
ε2). (6)

5. The Dirichlet–Neumann problem in a thin rod

Let C be the infinite cylinder {(x′, xn): x′ ∈ ω, xn ∈ R}, where ω is a bounded domain in Rn−1 with smooth
boundary. Also let C± denote Lipschitz subdomains of C separated from ±∞ by surfaces γ ±, respectively. We
introduce a positive number a, the vector a = (O′, a), where O′ is the origin of Rn−1, and the small parameter ε > 0.

By Gε we denote the fundamental solution for −� in the thin domain Cε = {x: ε−1(x−a) ∈ C+, ε−1(x+a) ∈ C−}
subject to zero Neumann condition on the cylindrical part of C and zero Dirichlet condition on the remaining part
of ∂Cε . Similarly, G+ and G− stand for the fundamental solutions for −� in the domains C±, and satisfy zero
Dirichlet condition on γ ±, zero Neumann condition on ∂C± \γ ±, and are bounded as xn → ∓∞. Let ζ± be harmonic
functions in C± subject to the same boundary conditions as G± and asymptotically equivalent to ∓|ω|−1xn + ζ±∞ as
xn → ∓∞, where ζ±∞ are constants. We note that ζ±(y) = limx→∞ G±(x,y). Finally, by G∞(x,y) we denote Green’s
function of the Neumann problem in C such that

G∞(x,y) = −(
2|ω|)−1|xn − yn| + O

(
exp

(−α|xn − yn|
))

as |xn| → ∞,

where α is a positive constant, and |ω| is the (n − 1)-dimensional measure of ω.

Theorem 6. The following asymptotic formula for Gε(x,y), uniform with respect to x,y ∈ Ωε , holds

Gε(x,y) = ε2−n

{
G+(

ε−1(x − a), ε−1(y − a)
) + G−(

ε−1(x + a), ε−1(y + a)
) − G∞(

ε−1x, ε−1y
)

− ε
( xn

ε|ω| − 1
2 (ζ−∞ − ζ+∞) + ζ+( x−a

ε
) − ζ−( x+a

ε
))(

yn

ε|ω| − 1
2 (ζ−∞ − ζ+∞) + ζ+(

y−a
ε

) − ζ−(
y+a
ε

))

2|ω|−1a + ε(ζ+∞ + ζ−∞)

+ 1

4

((
ε|ω|)−12a + ζ−∞ + ζ+∞ − 2

∑
±

(
ζ±(

ε−1(x ∓ a)
) + ζ±(

ε−1(y ∓ a)
))) + O

(
exp(−β/ε)

)}
,

where β is a positive constant independent of ε.

6. The Dirichlet problem in a truncated cone

Let K be an infinite cone {x: |x| > 0, |x|−1x ∈ ω}, where ω is a subdomain of the unit sphere Sn−1 such that
Sn−1 \ω has a positive (n−1)-dimensional harmonic capacity. Also let K0 and K∞ denote subdomains of K separated
from the vertex of K and from ∞ by surfaces γ and Γ , respectively.

By Gε and Gcone we denote Green’s function of the Dirichlet problem for −� in the domains Kε =
{x ∈ K0: ε−1x ∈ K∞} and K , respectively. Similarly, G0 and G∞ stand for Green’s functions of the Dirichlet problem
for −� in the domains K0 an K∞ satisfying zero Dirichlet boundary conditions on ∂K0 \ {O} and ∂K∞, with the
asymptotic representations

Z0(x) = |x|2−n−λΨ
(|x|−1x

)(
1 + o(1)

)
as |x| → 0,

and

Z∞(x) = |x|λΨ (|x|−1x
)(

1 + o(1)
)

as |x| → ∞,

where λ is a positive number such that λ(λ + n − 2) is the first eigenvalue of the Dirichlet spectral problem in ω for
the Beltrami operator on Sn−1, and Ψ is the corresponding eigenfunction. Similarly, we introduce λ2 > 0 such that
λ2(λ2 + n − 2) is the second eigenvalue of the same spectral problem.



190 V. Maz’ya, A. Movchan / C. R. Acad. Sci. Paris, Ser. I 343 (2006) 185–190
Theorem 7. Let ξ = ε−1x and η = ε−1y. Green’s function Gε(x,y) has the asymptotic behaviour

Gε(x,y) = G0(x,y) + ε2−nG∞(ξ ,η) − Gcone(x,y)

+ ελ

2λ + n − 2

{(
|ξ |λΨ

(
ξ

|ξ |
)

− Z∞(ξ)

)(
|y|2−n−λΨ

(
y
|y|

)
− Z0(y)

)

+
(

|η|λΨ
(

η

|η|
)

− Z∞(η)

)(
|x|2−n−λΨ

(
x
|x|

)
− Z0(x)

)}
+ O

(
εmin(2λ,λ2)

)
. (7)

This representation is uniform with respect to x and y in the truncated cone Kε .

7. Dirichlet problem in a domain containing several inclusions

It is straightforward to generalise the results of sections dealing with a domain containing a small inclusion/void
to the case of a body containing a finite number of inclusions. As an example, we formulate a generalisation of
Theorem 2. Let Ω ⊂ Rn, n > 2, be a bounded domain, and let O(1),O(2), . . . ,O(N) be interior points in Ω . Small
sets ω

(j)
ε , j = 1, . . . ,N , are defined by ω

(j)
ε = {x: ε−1(x−O(j)) ∈ ω(j) ⊂ Rn}, where ω(j), j = 1, . . . ,N , are bounded

domains in Rn, and they contain the origin O. Similar to Section 2, it is assumed that the minimum distance between
O(j), j = 1, . . . ,N , and the points of ∂Ω is equal to 1. Also, it is supposed that the distance between O and the
points of ∂ω(j), j = 1, . . . ,N , does not exceed 1. By Gε we denote Green’s function for the Laplacian in the domain
Ωε = Ω \ ⋃

j �ω(j)
ε .

Theorem 8. Let G and G(j) stand for Green’s functions of the Dirichlet problems in Ω and Rn \ �ω(j), respectively.
Also let H be the regular part of G, and P (j) denote the harmonic capacitary potentials of the sets �ω(j). Then

Gε(x,y) = G(x,y) + ε2−n

N∑
j=1

G(j)

(
x − O(j)

ε
,

y − O(j)

ε

)
− N

(n − 2)|Sn−1||x − y|n−2

+
N∑

j=1

{
H

(
O(j),y

)
P (j)

(
x − O(j)

ε

)
+ H

(
x,O(j)

)
P (j)

(
y − O(j)

ε

)

− H
(
O(j),O(j)

)
P (j)

(
x − O(j)

ε

)
P (j)

(
y − O(j)

ε

)
− εn−2 cap�ω(j)H

(
x,O(j)

)
H

(
O(j),y

)}

+
N∑

j=1

∑
1�j�N, i �=j

G
(
O(j),O(i)

)
P (j)

(
x − O(j)

ε

)
P (i)

(
y − O(i)

ε

)

+ O

(
N∑

j=1

εn−1

(min{|x − O(j)|, |y − O(j)|})n−2

)
(8)

uniformly with respect to x and y in Ωε . (Note that the remainder term in (8) is O(ε) on ∂(
⋃

j ω
(j)
ε ) and O(εn−1)

on ∂Ω .)
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