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Abstract

Let (W,H,µ) be the classical Wiener space. Assume that U = IW + u is an adapted perturbation of identity, i.e., u :W → H

is adapted to the canonical filtration of W . We give some sufficient analytic conditions on u which imply the invertibility of the
map U . To cite this article: A.S. Üstünel, M. Zakai, C. R. Acad. Sci. Paris, Ser. I 342 (2006).
 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

L’inversibilité des perturbations d’identité adaptées sur l’espace de Wiener. Soit (W,H,µ) l’espace de Wiener. Soit U =
IW + u une perturbation d’identité adaptée, i.e., u :W → H est adaptée à la filtration canonique de W . Nous donnons quelques
conditions suffisantes qui impliquent l’inversibilité de l’application U . Pour citer cet article : A.S. Üstünel, M. Zakai, C. R. Acad.
Sci. Paris, Ser. I 342 (2006).
 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Preliminaries

Let W = C0([0,1]) be the Banach space of continuous functions on [0,1], with its Borel sigma field denoted
by F . We denote by H the Cameron–Martin space, namely the space of absolutely continuous functions on [0,1]
with square integrable Lebesgue density:

H =
{

h ∈ W : h(t) =
t∫

0

ḣ(s)ds, |h|2H =
1∫

0

∣∣ḣ(s)
∣∣2 ds < ∞

}
.

µ denotes the classical Wiener measure on (W,F), (Ft , t ∈ [0,1]) is the filtration generated by the paths of the
Wiener process (t,w) → Wt(w), where Wt(w) is defined as w(t) for w ∈ W and t ∈ [0,1]. We shall recall briefly
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some well-known functional analytic tools on the Wiener space, we refer the reader to [4,3,5] or to [6] for further
details: (Pτ , τ ∈ R+) denotes the semi-group of Ornstein–Uhlenbeck on W , defined as

Pτf (w) =
∫
W

f
(
e−τw +

√
1 − e−2τ y

)
µ(dy).

Let us recall that Pτ = e−τL, where L is the number operator. We denote by ∇ the Sobolev derivative which is the
extension (with respect to the Wiener measure) of the Fréchet derivative in the Cameron–Martin space direction. The
iterates of ∇ are defined similarly. Note that, if f is real valued, then ∇f is a vector and if u is an H -valued map,
then ∇u is a Hilbert–Schmidt (on H ) operator valued map whenever defined. If Z is a separable Hilbert space and if
p > 1, k ∈ R, we denote by Dp,k(Z) the µ-equivalence classes of Z-valued measurable mappings ξ , defined on W

such that (I +L)k/2ξ belongs to Lp(µ,Z) and this set, equipped with the norm

‖ξ‖p,k = ∥∥(I +L)k/2ξ
∥∥

Lp(µ,Z)
(1)

becomes a Banach space. From the Meyer inequalities, we know that the norm defined by
n∑

k=0

∥∥∇kξ
∥∥

Lp(µ,Z⊗H⊗k)
, n ∈ N,

is equivalent to the norm ‖ξ‖p,n defined by (1). We denote by δ the adjoint of ∇ under µ and recall that, whenever
u ∈ Dp,0(H) for some p > 1 is adapted, then δu is equal to the Itô integral of the Lebesgue density of u:

δu =
1∫

0

u̇s dWs.

2. A sufficient condition for invertibility

Assume that u :W → H is adapted, i.e., u(t) = ∫ t

0 u̇s ds, t ∈ [0,1] and that u̇s is Fs -measurable for almost all
s ∈ [0,1]. We suppose that ρ(−δu) defined as

ρ(−δu) = exp

[
−δu − 1

2
|u|2H

]
is the terminal value of a uniformly integrable martingale. We shall assume that u is in D2,0(H). We have

Theorem 1. Assume that u satisfies the hypothesis above. For τ ∈ [0,1], define uτ as to be Pτu, where Pτ is the
Ornstein–Uhlenbeck semigroup and assume also that E[ρ(−δuτ )] = 1 for τ ∈ [0,1]. Then the adapted perturbation
of identity U = IW + u is invertible provided that

E

[ 1∫
0

∣∣(IH + ∇uτ )
−1Luτ

∣∣
H

ρ(−δuτ )dτ

]
< ∞. (2)

Proof. Note that the map uτ is again adapted and H − C1 (in fact it is even H − C∞, cf. [7]). This means that there
exists a negligible set N ⊂ W (in fact its capacity is null [6]) with H + N ⊂ N , such that, for any w ∈ Nc, the map
h → uτ (w + h) is continuously Fréchet differentiable on H . Consequently Uτ = IW + uτ satisfies the change of
variables formula: for any f ∈ Cb(W),

E
[
f ◦ Uτρ(−δuτ )

] = E
[
f (w)Nτ (w)

]
,

where Nτ is the multiplicity function of Uτ , namely the cardinality of the set U−1
τ ({w}) (cf. [7]). Since E[ρ(−δuτ )] =

1, it follows that Nτ = 1 µ-almost surely and this implies the existence of the inverse of Uτ which is denoted as Vτ .
Note that Vτ is of the form Vτ = IW + vτ , where vτ :W → H and that the image of µ under Vτ , denoted as Vτµ, is
equivalent to µ with the Radon–Nikodym density

dVτµ = ρ(−δuτ ). (3)

dµ
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We also have vτ = −uτ ◦ Vτ . We shall prove that limτ→0 vτ exists in L0(µ,H). Note that τ → vτ is differentiable on
(0,1) and we have

dvτ

dτ
= −(

(IH + ∇uτ )
−1Luτ

) ◦ Vτ . (4)

Since

|vβ − vα| �
β∫

α

∣∣∣∣dvτ

dτ

∣∣∣∣
H

dτ,

and since L0(µ,H) is complete, in order to show that limα,β→0 µ({|vα − vβ | > c}) = 0, for any c > 0, it suffices to
show that

E

κ∫
0

∣∣∣∣dvτ

dτ

∣∣∣∣dτ < ∞,

for some κ > 0. From the relations (3) and (4), we obtain

E

β∫
α

∣∣∣∣dvτ

dτ

∣∣∣∣
H

dτ = E

β∫
α

∣∣((IH + ∇uτ

)−1Luτ

) ◦ Vτ

∣∣
H

dτ

= E

β∫
α

∣∣(IH + ∇uτ )
−1Luτ

∣∣
H

ρ(−δuτ )dτ.

Hence the hypothesis (2) implies the existence of the limit limτ→0 vτ in L1(µ,H) which we shall denote by v. Since
vτ = −uτ ◦ Vτ and since (ρ(−δuτ ), τ ∈ [0,1]) is uniformly integrable, V µ is absolutely continuous with respect to
µ and we have also the identity v = −u ◦ V , where V = IW + v. Now it is easy to see that U ◦ V = V ◦ U = IW

µ-almost surely. �
Combining Theorem 1 with the inequality of T. Carleman (cf. [1] or [2], Corollary XI.6.28) which says:∥∥det2(IH + A)(IH + A)−1

∥∥ � exp
1

2

(‖A‖2
2 + 1

)
,

for any Hilbert–Schmidt operator A, where the left hand side is the operator norm, det2(IH +A) denotes the modified
Carleman–Fredholm determinant and ‖ · ‖2 denotes the Hilbert–Schmidt norm, we get

Theorem 2. Assume that u ∈ D2,1(H) such that E[ρ(−δuτ )] = 1 and that

E

[
e

1
2 ‖∇u‖2

2

1∫
0

Pτ

(
ρ(−δuτ )|Luτ |H

)
dτ

]
< ∞.

Then U satisfies the conclusions of Theorem 1.

Proof. The integrand in the relation (2) can be upperbounded as follows:

∣∣(IH + ∇uτ )
−1Luτ

∣∣
H

� exp
1

2

(‖∇uτ‖2
2 + 1

)|Luτ |H

� |Luτ |H Pτ

(
exp

1

2

(‖∇u‖2
2 + 1

))
,

where the second line follows from the Jensen inequality. Here there is no term with det2 since, ∇uτ being quasi-
nilpotent, its Carleman–Fredholm determinant is always equal to one. We then use the symmetry of Pτ with respect
to µ. �
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Corollary 1. Suppose that u is adapted, E[ρ(−δuτ )] = 1 for all τ ∈ [0,1]. Let ε > 0 be given and assume further
that u ∈ D ε+1

ε
,2(H) and that the following relation holds:

E

[(
1 + e−e(1+ε)δu

)
exp

(
1 + ε

2
‖∇u‖2

2

)]
< ∞. (5)

Then U = IW + u is µ-almost surely invertible.

Proof. Let Cε represent the left-hand side of the relation (5), then using the Hölder inequality we get

E

[ 1∫
0

∣∣(IH + ∇uτ )
−1Luτ

∣∣
H

ρ(−δuτ )dτ

]
� C

1
1+ε
ε ‖u‖ 1+ε

ε
,2.

Hence the conclusion follows. �
Remark. If we take ε = 1 in Corollary 1, then it is easy to see, using the Wiener chaos expansion for E[|LPτu|2H ]
that

E

1∫
0

|LPτu|2H dτ � ‖u‖2
2,1.

Remark. In the case where u is not adapted, the condition (5) with ε = 1 is sufficient for the measure theoretic degree
of the map U to be one as it is proven in Theorem 9.3.2 of [7].
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