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Abstract

We report the discovery of an infinite quantity of Mandelbrot-like sets in the real parameter space of the Hénon map, a bidi-
mensional diffeomorphism not obeying the Cauchy–Riemann conditions and having no critical points. For practical applications,
this result shows to be possible to stabilize infinitely many complex phases by tuning real parameters only. To cite this article:
A. Endler, J.A.C. Gallas, C. R. Acad. Sci. Paris, Ser. I 342 (2006).
 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Ensembles de Mandelbrot dans les systèmes dynamiques sans points critiques. Nous rapportons la découverte d’une quan-
tité infinie d’ensembles de Mandelbrot dans l’espace des paramètres réels de la application d’Hénon, un difféomorphisme à deux
dimension qui ne suit pas les conditions de Cauchy–Riemann et qui ne possède pas de points critiques. Pour des applications pra-
tiques, nous montrons qu’il est possible de stabiliser une quantité infinie de phases complexes en ajustant seulement des paramètres
réels. Pour citer cet article : A. Endler, J.A.C. Gallas, C. R. Acad. Sci. Paris, Ser. I 342 (2006).
 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

The Hénon map Ha,b :X → X defined by Ha,b(x, y) �→ (a − x2 + by, x) has been intensively studied in math-
ematics, physics and other disciplines [15]. But the perspectives prevailing in these fields are rather different. While
mathematicians center investigations in the case where X = C

2 aiming full generality, practical applications are es-
sentially restricted to the case X = R

2, slaved by requirements imposed by the physical interpretations attached to
parameters and variables. The situation may be contrasted, for instance, by comparing recent work of Bonnot [4] and
Bonatto et al. [3]. The parameter space of the Hénon map when X = R

2 was first considered by El Hamouly and
Mira [13,14] in this Journal. Subsequent works include [22,16,19,2,12,17,11,1,21,7,8,20,9,10] and many references
therein.

The archetypal model of complex dynamics is the quadratic family Qc(z) ≡ c − z2 and the archetypal set is the
Mandelbrot set M, a subset of the c-plane given by M = {c | limn→∞ Qn

c (0) � ∞}, where z = 0 is the critical point
of Qc(z) and Qn

c(z) denotes the nth composition of the map with itself [6,18]. Discrete dynamics in one complex
variable is equivalent to a restricted class of two-dimensional maps involving two real variables and two functions
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Fig. 1. Phase-diagrams illustrating two typical families of stability islands characterized by real-valued orbits.

that must obey Cauchy–Riemann conditions. But these conditions are not fulfilled by generic 2D dynamical systems
routinely used as models of natural phenomena [15].

Our goal here is to report some remarkable numerical results obtained for the Hénon map when allowing for
complex variables but still requiring parameters to be real, in a sort of middle ground between the aforementioned
extreme situations. Mathematically, we investigate a quite different problem: a dynamical system having no critical
points at all, the central players in the dynamics of complex functions.

The main novelty found is that by breaking the Cauchy–Riemann conditions one also breaks the known symmetries
of the M set. Freed from the Cauchy–Riemann restriction one sees the abundant emergence of parameter domains
with shapes that, while still somewhat resembling the M set, arise however with many variegated shapes, richer struc-
tures and with quite different metric properties. We refer generically to these domains as ‘Mandelbrot-like’ structures.
Physically, they represent ‘islands of stability’, namely islands of Lyapunov stability with dynamics globally struc-
turally stable. Here we focus on the qualitative description of these Mandelbrot-like structures which are typically
present in multiparameter dynamical systems. Independently of how we move in parameter space, the global dynami-
cal picture entails always a continuous and smooth interchange between infinite sets of complex and real stable orbits.
Surprisingly, for real parameters, domains of stable real orbits are inexorably tied to domains of stable complex orbits
in phase-diagrams and vice-versa.

The structuring of the parameter space is uncovered by studying for each parameter pair (a, b) the behavior of
the iterates (x, y) and painting the point (a, b) with a specific color codifying the asymptotic behavior found. For
instance, Fig. 1(a) illustrates the ‘bare’ parameter domains as usually obtained when considering real orbits only. The
large pink background indicates parameters leading to unbounded orbits (divergence). The several colored structures
correspond to periodic orbits, the period of the larger domains being indicated near to them. The white color codifies
domains of ‘chaos’, namely either aperiodic orbits or orbits having period larger than 512. For better contrast, the main
body of each stability island is shown in black. Whenever there is coexistence of orbits, we plotted the non-divergent
orbit with basin of attraction of smallest volume in the rectangle x ∈ [−2.5,2.5] and y ∈ [−10,10], discretized on a
1024 × 1024 grid. Box B in Fig. 1(a) is magnified in Fig. 1(b). It displays two different types of singular structures
which arise from a central body of period 10: a cuspidal and a rounded structure. These singularities may be described
using the two normal forms of a cubic polynomial defined by the sign of the cubic term [5]. Fig. 1(c) shows a similar
pair of singularities emanating from a central body of period 14 (not shown). Both structures seen in Figs. 1(b) and
1(c) appear frequently in experiments [3]. The structures in boxes A and C of Fig. 1(a) appear magnified in Figs. 2
and 3, where they now include the new decorations due to the stable complex orbits. Each individual figure displays
600 × 600 parameters.

The upper left corner in Fig. 2(a) shows an example of the new remarkable domains typically found near cuspidal
singularities when stable complex orbits are also taken into account: the emergence of domains resembling ‘cactus
flowers’, i.e. shapes resembling distorted Mandelbrot sets. The black cusp in Fig. 2(a) has period-8, the same period of
the central yellow body of the cactus flower shown magnified in Fig. 2(b). Parameters from this body produce pairs of
stable complex conjugate orbits, having the sum σ of the x coordinates of the orbit characterized by complex values.
When changing parameters downwards near to the symmetry axis of Fig. 2(a) one finds a continuous conversion
from a 8 × 2n cascade of complex orbits into a 8 × 2n cascade of real orbits. These cascades are interconnected by
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Fig. 2. Typical decoration produced by complex-valued orbits near a cuspidal singularity, here of period 8.

Fig. 3. Typical decoration produced by complex-valued orbits near the tip of a non-cuspidal singularity, here of period 6.

the two period-8 domains: the period-8 domain of the cactus of complex orbits and the period-8 cusp of real orbits.
Numbers denote periods. Fig. 2(c) illustrates new phenomena found profusely: (i) the accumulation of self-similar
cactus flowers toward the black domain characterized by real orbits, (ii) Mandelbrot-like structures orderly packed
along line segments, not closed curves. To indicate the speed of convergence towards the accumulation point, black
dots in Fig. 2(c) mark main bodies of periods 72, 120 and 168, from top to bottom.

Fig. 3(a) illustrates the striking structure found generically on the top of non-cuspidal singularities, making them
look altogether similar to a ‘sword-fish’. As before, the new domains seen are also due to stable complex orbits.
They complement here the non-cuspidal structure inside box C in Fig. 1, due to real orbits of period 6 whose exact
analytical expression was given in [7,8]. The non-cuspidal period-6 top forming the central nucleus is surrounded
by five period-12 domains. There is a trivial pair of symmetrically placed cuspidal structures seen on the side of the
central core. They correspond to doublings of the original period-6 orbits. The three green islands lying almost totally
inside box B in Fig. 3(b) show the central bodies of non-trivial highly structured domains due to complex-valued
orbits. The ‘nose’ along the symmetry axis arises from single complex orbits having a real value for the sum σ of
their x orbital coordinates [9], i.e. formed by complex conjugate orbital points. The structuring found on the cuspidal
top of the nose inside box A (singularity of the +1 eigenvalue locus) is analogous to that in Fig. 2(a), despite the
complex nature of the orbits here. Identical structuring exist on the tip of an analogous period-6 bow-tie cusp reported
analytically in [8] (orbits up to period 11 in [10]). The pair of black dots mark bifurcations points of codimension two
where four stability islands meet. The situation around one of these remarkable points is shown in detail in Fig. 3(c).
Parameters taken from the light-green period-12 domain lying above the curve containing the black dot in Fig. 3(c)
lead to pairs of stable conjugate complex orbits.

We believe our investigation to be accurate albeit not rigorous, to shed new light on a matter which seemed already
well exploited, and to be generic beyond the example selected. The results here pose an intriguing question: if not
critical points, what exactly is behind self-similar Mandelbrot-like sets more generically? The isomorphism observed
recently [3] between the parameter space of the Hénon map and that of a popular CO2 laser model makes us believe
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that the singularities reported here might be directly observable in the laboratory in a not too distant future. Additional
results will be presented elsewhere.
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