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Abstract

This Note presents the first known class of termination orders for 3-polygraphs, together with an application.To cite this article:
Y. Guiraud, C. R. Acad. Sci. Paris, Ser. I 342 (2006).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Ordres de terminaison pour 3-polygraphes.Cette Note présente la première classe connue d’ordres de terminaison a
aux 3-polygraphes, ainsi qu’une application.Pour citer cet article : Y. Guiraud, C. R. Acad. Sci. Paris, Ser. I 342 (2006).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Polygraphs are cellular presentations of higher-dimensional categories introduced in [1]. They have bee
to generalize term rewriting systems but they lack some tools widely used in the field. This note presents
developed in [2] which fills this gap for some 3-dimensional polygraphs: it introduces a method to crafttermination
orders, one of the most useful ways to prove that computations specified by a formal system always end afte
number of transformations.

1. Notions about 3-polygraphs

The formal definition of polygraphs can be found in [1]. Here, we restrict ourselves to the case of a 2-polygraph
with one 0-cell and one 1-cell: this is a graphΣ over the set of natural numbers. Elements ofΣ are called
2-dimensional cellsor circuits. Two 2-cells areparallel when they have the same source and the same ta
A 2-dimensional cellϕ :m → n is graphically pictured as a circuit withm inputs andn outputs:
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Given such a 2-polygraphΣ , one builds another 2-polygraph〈Σ〉: its 2-cells are all the circuits one can build fro
the ones inΣ , by either (horizontal) juxtaposition or (vertical) plugging. These two operations are pictured this

These constructions are consideredmodulo isotopy(or homeomorphic deformation):

Definition 1.1. A 3-polygraph with one0-cell and one1-cell is a pair(Σ,R) such thatΣ is a 2-polygraph with one
0-cell and one 1-cell andR is a graph over〈Σ〉 made of arrows between parallel circuits. An element ofR is called a
3-cell.

Thereduction relation generated byR is the binary relation on circuits of〈Σ〉 defined byf →R g whenever there
exists a 3-cellα :f0 → g0, together with two circuitsh andk, such that the following relations have a meaning
hold:

One says that the 3-polygraph(Σ,R) terminatesif there exist no family(fn)n∈N of circuits of 〈Σ〉 such that
fn →R fn+1 for every natural numbern.

Thereafter, we assume that every polygraph we consider has one 0-cell and one 1-cell. As for any kind of r
system, the easiest way to prove that a 3-polygraph terminates is to produce a well-chosen termination orde

Definition 1.2. A termination orderon a 2-polygraphΣ is a strict order> on parallel circuits such that there ex
no family (fn)n∈N of circuits withfn > fn+1 for everyn and such that, for any circuitf , the mapsf ∗0 (·), (·) ∗0 f ,
f ∗1 (·) and(·) ∗1 f are strictly monotone.

Proposition 1.3.Let (Σ,R) be a3-polygraph and> be a termination order onΣ . If, for any3-cell α from f to g,
the inequalityf > g holds, then(Σ,R) terminates.

2. Crafting termination orders for 3-polygraphs

Proposition 1.3 would remain useless without a recipe to build termination orders, such as the ones t
for term rewriting. Moreover, even though circuits are deeply linked with terms, there exist obstructions to d
transpose techniques from term rewriting to polygraphs. However, it is possible to adapt them.

Let us give a rough idea. Given a 2-polygraphΣ , circuits of〈Σ〉 are compared according to the ‘heat’ they prod
when presented with some ‘courant intensities’. The courants are plugged into each input and each output o
circuit f . Then, they propagate throughf to reach all the circuit components (elements ofΣ ) used to buildf . Each
component produces some heat, depending on the intensities of the courants it receives. The heat producf is
the sum of all the heats produced by the components off . Given another circuitg, parallel tof , f will be declared
greater thang if it always produces more heat thang when both receive the same courant intensities.

In order to formalize these ideas, we use two non-empty ordered setsX andY , for the courants:X is for descending
courants, or courants going from the inputs to the outputs, andY for ascending courants. We need also a commuta
monoidM , equipped with an order relation, such that the sum is strictly monotone in both arguments: this
to express heats. Finally, for each 2-cellϕ in Σ , we require threemonotonemapsϕ∗ :Xm → Xn, ϕ∗ :Yn → Ym

and[ϕ] :Xm × Yn → M , respectively expressing howϕ transmits descending courants, howϕ transmits ascendin
courants and how much heat it produces.
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Definition 2.1.The three interpretations(·)∗, (·)∗ and[·] are extended from 2-cells to circuits this way:

n∗ = IdXn, n∗ = IdYn, [n](�x, �y) = 0,

(f �0 g)∗ = (f∗, g∗), (f �0 g)∗ = (f ∗, g∗), [f �0 g](�x, �x′, �y, �y′) = [f ](�x, �y) + [g](�x′, �y′),
(f �1 g)∗ = g∗ ◦ f∗, (f �1 g)∗ = f ∗ ◦ g∗, [f �1 g](�x, �y) = [f ](�x,g∗(�y)

) + [g](f∗(�x), �y)
.

One has to prove that the three interpretations(·)∗, (·)∗ and[·] are well-defined on every circuit and that, for ea
circuit f , the three mapsf∗, f ∗ and[f ] are monotone [2]. Now we define an order on parallel circuits and prov
main result.

Definition 2.2. With the same notations, one defines a binary relation> on parallel circuits of〈Σ〉: let f andg be
two circuits withm inputs andn outputs. Thenf > g if, for any �x ∈ Xm, �y ∈ Yn, the inequalitiesf∗(�x) � g∗(�x),
f ∗(�y) � g∗(�y) and[f ](�x, �y) > [g](�x, �y) hold.

Theorem 2.3.Let us keep the afore-given notations and let us assume that the order relation on the comm
monoidM does not admit infinite strictly decreasing sequences. Then, the binary relation> on parallel circuits of〈Σ〉
is a termination order onΣ . In particular, if every3-cell α in R from f to g satisfiesf > g, then the3-polygraph
(Σ,R) terminates.

Fig. 1. The sixty-seven 3-cells of L(Z2).
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3. Termination orders at work

Theorem 2.3 has been used in [2] in order to prove two conjectures from [3]. We present one of them here
the termination of the 3-polygraph L(Z2), which is a presentation of the structure ofZ/2Z-vector space. This is a
important point for polygraphs since such a presentation cannot exist in the term rewriting formalism.

The polygraph L(Z2) has six 2-cells , , , , , and , together with sixty-seven 3-cells, pictured in Fig. 1.
order to prove the termination of L(Z2), we considerX = Y = N, equipped with its natural order, whileM is the free
commutative monoid generated byN

∗, equipped with themultiset order: this is the smaller order strictly compatib
with the sum such thatp.n < n + 1, for everyp andn and wheren denotes the natural numbern seen as a generat
of M .

An application of Theorem 2.3 shows that the following interpretations generate a termination order tha
the conjecture. For each 2-cellα, the first two diagrams giveα∗ andα∗, while the third one gives[α]:
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