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Abstract

We establish here necessary and sufficient conditions for the propagation of convexity in parabolic equations. We consider as
well linear equations and fully nonlinear ones. And we discuss several variants and extensions of these results. To cite this article:
P.-L. Lions, M. Musiela, C. R. Acad. Sci. Paris, Ser. I 342 (2006).
© 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Convexité des solutions d’équations paraboliques. Nous établissons dans cette note des conditions nécessaires et suffi-
santes pour la propagation de la convexité des solutions d’équations paraboliques. Nous considérons aussi bien des équations
linéaires que complètement non linéaires. Et nous mentionnons diverses variantes et extensions de ces résultats. Pour citer cet
article : P.-L. Lions, M. Musiela, C. R. Acad. Sci. Paris, Ser. I 342 (2006).
© 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Version française abrégée

Nous obtenons et prouvons dans cette note des conditions nécessaires et suffisantes pour la propagation de la
convexité des solutions d’équations elliptiques du second ordre, éventuellement dégénérées aussi bien dans le cas
linéaire que dans le cas complètement non linéaire. Plus précisément, nous considérons la solution (de viscosité,
voir [2]) de

∂u

∂t
− aij ∂ij u = 0, x ∈ RN, t > 0 (1)

ou
∂u

∂t
+ F

(
x,D2

xu
) = 0, x ∈ RN, t > 0 (2)

vérifiant la condition initiale

u|t=0 = u0(x) sur RN. (3)
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Les conditions précises sur a et F sont données dans la version anglaise ci-dessous.
Nous dirons que la convexité est préservée pour l’Éq. (1) (ou l’Éq. (2)) si u est convexe en x pour tout t � 0 chaque

fois que u0 est convexe.
Nos principaux résultats – dont les démonstrations sont esquissées dans la version anglaise ci-dessous – sont les

suivants :

Théorème 2.1. La convexité est préservée pour (1) si et seulement si la condition suivante est satisfaite(
aij (x + y)ξiξj

)1/2
est convexe en y ∈ (Rξ)⊥, ∀x ∈ RN, ∀ξ �= 0 ∈ RN.

Ce résultat permet bien sûr de retrouver les cas bien connus où la convexité est préservée (N = 1, aij quadra-
tique . . . ). Il implique également que si N � 2 et si a est sous quadratique à l’infini (par exemple bornée !) alors la
convexité n’est préservée que dans le cas trivial où a est constante.

Théorème 3.1. La convexité est préservée pour (2) si et seulement si la condition suivante est satisfaite

F(x + y,B) est concave en y ∈ (Rξ)⊥, A ∈ Xξ , ∀x ∈ RN, ∀ξ �= 0 ∈ RN

où Xξ = {
AN × N symétrique, Aξ = 0, A > 0 sur (Rξ)⊥

}
, B = A−1 sur (Rξ)⊥ et Bξ = 0.

Enfin, nous considérons dans la section 4 ci-dessous diverses variantes et extensions de ces résultats.

1. Introduction

We obtain and prove in this note necessary and sufficient conditions for the convexity of solutions of general second
order elliptic, possibly degenerate, equations both in the linear case and in the fully nonlinear one. More precisely, we
consider uniformly continuous (in x ∈ RN, t � 0 bounded) solutions u, say in viscosity sense – see the User’s guide
[2] by M.G. Grandall, H. Ishii and P.-L. Lions –, of

∂u

∂t
− aij ∂ij u = 0, x ∈ RN, t > 0 (1)

or

∂u

∂t
+ F

(
x,D2

xu
) = 0, x ∈ RN, t > 0, (2)

with the initial condition

u|t=0 = u0(x) in RN, (3)

where u0 is convex and (for instance) uniformly continuous on RN . Here and everywhere below, a = 1
2σ · σ T where

σ is Lipschitz (for instance) from RN into the space of N × m matrices, N,m � 1; u is real valued; D2u = D2
xu =

(∂ij u)1�i,j�N stands for the Hessian matrix and F = F(x,A) is continuous over RN × SN (the space of N × N

symmetric matrices), nonincreasing with respect to A and satisfies the classical uniqueness structure condition for
viscosity solutions (see [2]).

We shall say that convexity is preserved for (1) (or (2)) if u is convex in x for all t � 0 whenever u0 is convex. In
Section 2 below, we establish a necessary and sufficient condition on a (or σ ) for preserving convexity in the case of
Eq. (1). We then derive in Section 3 an analogous result in the fully nonlinear case (2). Finally, we briefly mention in
Section 4 several extensions and variants.

The question solved in this note is both a natural and classical one and we refer the reader to N.J. Korevaar [7];
A.U. Kennington [6]; B. Kawohl [5]; H. Ishii and P.-L. Lions [4]; Y. Giga, S. Goto, H. Ishii and M.H. Sato [3]. In these
works (some of which address closely related issues), sufficient conditions are derived by the use of the maximum
principle (basically for ‘D2u’). More recently, a more geometrical approach, through the use of the convex envelope
of u, was introduced by O. Alvarez, J.-M. Lasry and P.-L. Lions [1] allowing to obtain rather general sufficient
conditions. The fact that we obtain necessary and sufficient conditions appears to be new. Our methods of proof (in
fact, we present below two different approaches for the ‘sufficient part’, one of which is an extension of the geometrical
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argument introduced in [1]) are also somewhat different or more general than the ones used in the above references,
although, as is to be expected, we do use the maximum principle.

Our main motivation for studying this question and related ones (mentioned in Section 4) stems from mathematical
modelling in Finance. Indeed, the fact that convexity is preserved is an important and natural requirement for a
financial model (see, for instance, M. Romano and N. Touzi [8]). Finally, let us mention (and this is clearly related to
the application to Mathematical Finance) the probabilistic interpretation of our results in the linear case. Let Xt be the
diffusion process corresponding to a i.e. denoting by Wt a standard n-dimensional Brownian motion

dXt = σ(Xt ) · dWt, X0 = x ∈ RN. (4)

Then, the solution of (1) corresponding to the initial condition (3) is given by u(x, t) = E[u0(Xt )] and the question
about preserving convexity is then equivalent to the question of the convexity in x (for all t > 0) of E[u0(Xt )]
whenever u0 is convex. Let us make two observations at this stage: (i) the fact that convexity is preserved if N = 1
for (1) is well-known and easy to check by analytical or probabilistic arguments. . . , (ii) we do not know whether the
main result in section 1 below can be proved by a purely probabilistic argument.

2. The linear case

Theorem 2.1. Convexity is preserved for (1) if and only if the following condition holds
∣∣σ T(x + y) · ξ ∣∣ = 2

(
a(x + y) · ξ, ξ

)1/2
is convex in y ∈ (Rξ)⊥, for all x ∈ RN, for all ξ �= 0 ∈ RN. (5)

Remarks and examples. (i) Obviously, (5) holds if N = 1 or if σ is affine in x.
(ii) If a is strictly subquadratic at infinity (

a(x)

|x|2 → 0 as |x| → ∞), then, when N � 2, (5) holds if and only if a is
constant!

(iii) If N = m,σij = ϕi(x)δij where ϕi � 0 is convex in x, then (5) holds.
(iv) The condition (5) is, as it should be (!), invariant by linear transformations of RN . It is also satisfied for λa and

a1 + a2 if λ > 0 and (5) holds for a, a1, a2. This is to be expected in view of simple arguments involving rescaling
time (for λa) and Trotter formula (for a1 + a2).

(v) If a is smooth (say C2), (5) is equivalent to: ∀|ξ | = 1,∀|η| = 1, ξ · η = 0
(

∂2aij

∂η2
(x)ξiξj

)(
aij (x)ξiξj

)
� 1

2

(
∂aij

∂η
ξiξj

)2

on RN. (6)

Sketch of proof of Theorem 2.1. We begin with a few preliminary observations. First of all, it is enough to prove the
result when a is uniformly elliptic (i.e. a(x) � νIN on RN for some ν > 0) and smooth. This follows easily from a
simple approximation argument on one hand and from Remark (iv) by regularization and addition of νIN to a on the
other hand.

At this stage, the strategy of proof is the following. In order to prove that (5) is a sufficient condition, we consider
a solution u of (1) for an arbitrary smooth convex initial condition u0 such that αIN � D2

xu0 � βIN on RN (for some

0 < α < β < ∞). And we look at t0 = inf{t � 0 | inf[ ∂2u

∂ξ2 (x, t) | x ∈ RN, |ξ | = 1] = 0} and we assume without loss of
generality that 0 < t0 < ∞. By appropriate perturbation arguments which are somewhat classical in the use of maxi-

mum principle, we may assume without loss of generality that there exist x0 ∈ RN, |ξ | = 1 such that ∂2u

∂ξ2 (x0, t0) = 0
and it is then enough to show that we have

∂

∂t

{
∂2u

∂ξ2
(x0, t0)

}
� 0. (7)

In order to do so, we observe that w = ∂2u

∂ξ2 satisfies

∂w − aij ∂ijw − 2
∂aij

∂ij

∂u − ∂2aij

2
∂ij u = 0 (8)
∂t ∂ξ ∂ξ ∂ξ
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and that we have by the convexity of u at time t = t0

D2u(x0, t0) � 0,
∂2u

∂ξ2
(x0, t0) = 0, ∇ ∂2u

∂ξ2
(x0, t0) = 0,

∂4u

∂ξ4
(x0, t0) � 0. (9)

The method of proof then consists in expanding u at x0 to the fourth order, deduce the restrictions on this 4th order
polynomial from convexity and prove (7) using (8) and the condition (5). Up to a rotation and a translation, we may
assume without loss of generality that x0 = 0, ξ = eN and write x = (y, z) ∈ RN−1 × R.

We thus write (using (9))

u(·,t0) = c0 + c1 · y + c2z + 1

2

{
Aijyiyj + Bij yiyj z + Dijyiyj z

2

+ αz4 + βiyiz
3 + γijkyiyj ykz + εijkyiyj yk + δijklyiyj ykyl + ◦(|y|2 + z2)2}

, (10)

for some c0, c2, α ∈ R;β, c1 ∈ RN−1; symmetric matrices A, B and D and tensors γ , ε and δ. Using (9) and (10), (8)
reduces to

∂w

∂t
= ∂2aij

∂z2
Aij + 2

∂aij

∂z
Bij + 2aijDij + 12αaNN + 6βiaiN . (11)

Next, we write the fact that D2u(·,t0) � 0 and we observe that without loss of generality, we may take γ = ε = δ =
0 since they do not appear in (11) nor do they matter in the inequality below hence obtaining for all ζ ∈ Rd−1, Θ ∈ R

Aij ζiζj + Bij ζiζj z + Dij ζiζj z
2 + 2BijyiζjΘ + 4Dijyiζj zΘ

+ 6αz2Θ2 + (Dij yiyj )Θ
2 + 3βiζiz

2Θ + 3βiyizΘ
2 � 0, (12)

for z small. Moreover, we deduce that we have for all Y ∈ RN−1, ζ ∈ RN−1, Θ ∈ R

Aij ζiζj + 2BijYiζj + DijYiYj + 6αΘ2 + 3βiζiΘ � 0. (13)

Thus there only remains to show that (13) and (5) imply that the right-hand side of (11) is nonnegative.
We then write (13) as follows

Aij ζiζj + 2BijYiζj +
(

Dij − 3

8α
βiβj

)
YiYj + 6α

(
Θ + 1

4α
βiYi

)2

� 0 (14)

(assuming without loss of generality that α > 0). Next, we observe that

2aij

(
3

8α
βiβj

)
+ 12αaNN + 6βiaiN = 12α

{
aNN + 2aiN

(
βi

4α

)
+ aij

βi

4α

βj

4α

}
� 0, since aij � 0,

and we thus only need to consider the case when α = β = 0.
And there only remains to prove that if A,B,D are symmetric matrices (we may assume that A,D > 0 without

loss of generality) satisfying

Aij ζiζj + 2BijYiζj + DijYiYj > 0 (15)

and K = ∂2aij

∂z2 , L = ∂aij

∂z
, M = aij satisfy in view of (6)

(Kij ηiηj )(Mijηiηj ) � 1

2
(Lij ηiηj )

2, (16)

then we have

Tr(KA) + 2 Tr(LB) + 2 Tr(MD) � 0. (17)

This is an elementary exercize in matrix analysis which can be checked easily once we remark that (15) is equivalent
to D � BA−1B , and that (16) is equivalent to

(Kζ, ζ ) + 2λ(Lζ, ζ ) + 2λ2(Mζ, ζ ) � 0, ∀ζ ∈ RN−1, ∀λ ∈ R.
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Then, replacing for instance ζ by A1/2ζ , K by A1/2KA1/2, L by A1/2LA1/2, M by A1/2MA1/2 and diagonalizing
A−1/2BA−1/2, we deduce the following inequality which yields (17)

Tr(KA) + 2 Tr(LB) + 2 Tr(MBA−1B) � 0. (18)

The above proof allows also to prove the fact that (5) is a necessary condition: indeed, if (6) does not hold for some
x ∈ RN , |η| = 1 that we may always assume, without loss of generality, to be x = 0, η = eN , the above argument
shows clearly that there exist symmetric (N − 1) × (N − 1) matrices A,B,D such that A > 0, D > 0, D > BA−1B

and
∂2aij

∂z2
Aij + 2

∂aij

∂z
Bij + 2aijDij < 0. (19)

We then choose u0 to be 1
2 {Aijyiyj + Bij yiyj z + Dijyiyj z

2} on a neighborhood of 0 on which this polynomial
is convex (and we extend it to be a convex function on RN by standard extension arguments). And we conclude
since (19) implies that we have

∂

∂t

{
∂2u

∂z2

}
(0,0) < 0 while

∂2u

∂z2
(0,0) = ∂2u0

∂z2
(0,0) = 0. �

3. The fully nonlinear case

Theorem 3.1. Convexity is preserved for (2) if and only if the following condition holds for all ξ �= 0 ∈ RN and for
all x ∈ RN

F(x + y,B) is concave in y ∈ (Rξ)⊥, A ∈ Xξ ,

where Xξ = {
A ∈ SN, Aξ = 0, A > 0 on (Rξ)⊥

}
, B = A−1 on (Rξ)⊥ and Bξ = 0. (20)

Remarks. (i) The above result and its proof is an extension of the main result in [1], where it is shown that convexity
is preserved for (2) if F(x,A−1) is concave in (x,A) ∈ RN × SN,A > 0.

(ii) If F(x,B) = −Tr(aij (x)Bij ) (and (2) reduces to (1)), one can show that (20) is equivalent to (5) (as it should!).

Sketch of proof of Theorem 3.1. The fact that (20) is necessary is shown exactly as in the proof of Theorem 2.1
(after a regularization and approximation argument that we do not detail here).

In order to prove that (20) is also a sufficient condition, we follow and extend the proof introduced in [1] which con-
sists in showing that the convex envelope v = u∗∗ of u is a (viscosity) supersolution on (2). Hence, by the comparison
principle for viscosity solutions, u∗∗ � u and thus u∗∗ = u.

Next, we explain the modification in the argument of [1] in the case when u is smooth. Moreover, we only need to
consider points (x0, t0) ∈ RN × (0,∞) such that v(x0, t0) < u(x0, t0). Then there exist

k ∈ {2, . . . ,N + 1}; x1, . . . , xk ∈ RN ; λ1, . . . , λk ∈ (0,1)

such that
k∑

i=1

λi = 1,

k∑
i=1

λixi = x0,

k∑
i=1

λiu(xi) = v(x0) and x2 − x1, . . . , xk − x1

are linearly independent. We assume that k = 2, the other cases then follow by a single geometrical method arguing
inductively on k (notice for instance that if k = 3, N = 2, v is affine near x0 . . .). We then denote by ξ = x2 − x1 and
we observe that v is affine on the segment [x1, x2]. We then argue formally as if v were twice differentiable at (x0, t0)

(the justification in general following as in [1] from the study of the superjet of v). We then remark that we have
∂2v

∂ξ2 (x0, t0) = 0. On the other hand, see [1] for more details, we have

∇xv(x0, t0) = ∇xu(x1, t0) = ∇xu(x2, t0),

∂v

∂t
(x0, t0) � ∂u

∂t
(x1, t0),

∂v

∂t
(x0, t0) � ∂u

∂t
(x2, t0), (21)

A �
(
λ1A

−1
1 + λ2A

−1
2

)−1 on (Rξ)⊥, A1 � 0, A2 � 0

where A = D2
xv(x0, t0), A1 = D2

xu(x1, t0), A2 = D2
xu(x2, t0).



920 P.-L. Lions, M. Musiela / C. R. Acad. Sci. Paris, Ser. I 342 (2006) 915–921
Hence, we have using (21) and the ‘ellipticity’ of F

∂v

∂t
(x0, t0) + F(x0,A) � λ1

∂u

∂t
(x1, t0) + λ2

∂u

∂t
(x2, t0) + F(λ1x1 + λ2x2,B)

where B = (λ1A
−1
1 + λ2A

−1
2 )−1 on (Rξ)⊥ and Bξ = 0. We then deduce from (20) the following inequality

∂v

∂t
(x0, t0) + F(x0,A) � λ1

(
∂u

∂t
(x1, t0) + F

(
x1, Ã1

)) + λ2

(
∂u

∂t
(x2, t0) + F

(
x2, Ã2

))

where Ãi = Ai on (Rξ)⊥, Ãiξ = 0, and thus Ãi � Ai (i = 1,2).
And we conclude using the ‘ellipticity’ of F

∂v

∂t
(x0, t0) + F(x0,A) � λ1

(
∂u

∂t
(x1, t0) + F(x1,A1)

)
+ λ2

(
∂u

∂t
(x2, t0) + F(x2,A2)

)
= 0. �

Of course, the above argument can be used in the special case of a linear equation in which case (2) reduces to (1)
and thus provides another proof of the fact that (5) is a sufficient condition in Theorem 2.1.

4. Extensions and variants

Many extensions and variants are possible. Let us mention without further detail equations involving t, u and Dxu

(i.e. F = F(x, t, u,Dxu,D2
xu)), obstacle problems, elliptic equations instead of parabolic equations or equations in-

volving integro-differential terms (corresponding to jump diffusion processes). Boundary conditions are more delicate
to handle except for ‘state constraints’ boundary conditions (see [1] for more detail on the role of boundary condi-
tions . . . ). Another variant, of interest for financial applications, consists in considering a class of initial conditions,
say when N = 1, u0 of the following form u0(x) = (x − K)+ (‘calls’). We may then study the joint convexity in
(x,K) of the solution of (1) (or (2)).

Another extension which can be solved by the methods introduced here concerns the partial convexity of u with
respect to a set of variables y whenever u0 is itself convex in y. However, a much more delicate problem consists in
asking the same question whenever u0 is a convex function of y only. It turns out that this second question is relevant
for financial applications and our preliminary results in that direction indicate that, in general, the solution is not
always convex except for very particular examples (which have to be studied specifically).

Another direction that can be studied with our methods is the propagation of C1,1 bounds or of semi-convexity
bounds. In the case of the propagation of semi-convexity bounds, we consider C0 � 0 and ask whether the solution u

of (2) satisfies for all t � 0 (for instance)

u(x, t) + 1

2
C0|x|2 is convex on RN (22)

whenever u0 + 1
2C0|x|2 is convex on RN . Obviously, a necessary and sufficient condition is deduced from Theorem 3.1

considering F(x,A − C0IN) in place of F(x,A).
This observation allows to prove the following result

Theorem 4.1. Let F be continuous, nonincreasing on SN and assume that F satisfies for some R > 0

F(A) is concave in A if λ1(A) � −R (23)

where λ1(A) is the first eigenvalue of A. Let u0 ∈ UC(RN) be semi-convex on RN . Then, the viscosity solution
u ∈ UC(RN × [0, T ]) (∀T ∈ (0,∞)) satisfies (22) for all t ∈ (0,∞) for some C0 � R.

In particular, if F is uniformly elliptic i.e. if F satisfies for some ν > 0

F(A + B) � F(A) − ν Tr(B), ∀A ∈ SN, ∀B ∈ SN, B � 0, (24)

then u ∈ L∞
t (C

1,1
x ) whenever u0 ∈ C1,1 (i.e. D2

xu0 ∈ L∞
t,x ).
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It suffices indeed to observe that (20) holds for F(A − C0IN) for C0 � R since λ1(B − C0IN) � −C0 � −R and
λ1(A − C0IN) � −C0 � R (using the convexity properties of A → A−1 and the ‘ellipticity’ of F as in [1]).

The detailed proofs of the results presented in this Note and the various variants and extensions mentioned in this
section will be detailed elsewhere.
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