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Abstract

In this note we study logarithmic transformations in the sense of differential topology on two fibers of the Hopf surface. It is
known that such transformations are susceptible to yield exotic smooth structures on 4-manifolds. We will show here that this is
not the case for the Hopf surface, all integer homology Hopf surfaces we obtain are diffeomorphic to the standard Hopfsurface.
citethisarticle: R. Zentner, C. R. Acad. Sci. Paris, Ser. | 342 (2006).
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Résumé

Transformations logarithmiques sur la surface de Hopf.Dans cette note nous étudions des transformations logarithmiques
au sens de la topologie différentielle le long de deux fibres de la surface de Hopf. Il est connu que ce type de transformations peu
donner lieu a des structures différentiables exotiques sur les 4-variétés. Nous allons montrer que ceci n’est pas le cas pour la surfa
de Hopf. En effet, les surfaces de Hopf homologiques que nous obtenons sont difféomorphes a la surface de HopPstandard.
citer cet article: R. Zentner, C. R. Acad. Sci. Paris, Ser. | 342 (2006).
0 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Version francaise abrégée

Définition 0.1. Soit 7 : X — X une fibration elliptique. On dit que la 4-varié¥¥ est obtenue a partir d& par
une transformation logarithmique sur la fibre réguliérsi X’ est le résultat de I'opération suivante : On enléve un
voisinage tubulaire F de F et on colleT? x D2 4 X — vF par un difféomorphisme: 72 x ST — gvF.

La valeur absolue du degré de;,r o ¢| .51 s'appelle la multiplicité de la transformation logarithmique. Le
difféomorphismep est déterminé, a isotopie pres, par I'isomorphisme entre les groupes fondamentaux qu'il induit.
Considérons la 4-variété’ obtenue a partir de la surface de Hdpt= S x S — §2 par transformations logarith-
miquesg sur deux fibresFy. Si g, (resp.¢_) est de direction(a, b) (resp.(c, d)) et de multiplicitép (resp.q),
alors X’ aura pour groupe fondamental

X)) = B,y o, B1=1, [, y]1=1, [B,y1=1,aB(ay )’ =1, ap?y? =1).
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On trouve donc que1(X") = Z @ Z/uZ, ol est le plus grand commun diviseur de tous les mineurs d’ordre 2 d'une
matrice de présentation dg(X’). Pour de nombreux choix possiblessera égal a 1.

Notons maintenant pa¥,, := (T2 x D?) Uy, (T? x D?) la 4-variéte qu’'on obtient en collafi® x D? aT? x D?
via le difffomorphisme/s entre leurs bords, et soit, I'ilsomorphisme entre groupes fondamentaux induit. Nous
obtenons ainsi la variété’ via le recollement

(T? x D?)U 1 (T? x A%) U (T? x A?)U,_ (T? x D?) =X

ot 93 osop_

Le difféfomorphisme donne la surface de Hopf standartkl;: = $1 x §3. En considérant I'automorphisme de groupe
fondamental induit pap;l o ¢ o @_ on peut voir si la variét&’ est une surface de Hopf homologique.

Théoréme 0.2.Supposons que la variésé, est une surface de Hopf homologique. Alarg est difféomorphe a la
surface de Hopf standarli, = S x $3.

Corollaire 0.3. Si deux transformations logarithmiques le long de deux fibres de la surface de Hopf résultent dans
une surface de Hopf homologique, alors cette variété est difféomorphe a la surface de Hopf ssdndai

La demonstration du Théoréme 0.2 utilise le fait que les varigtgset Xy, .40y, sont diffeomorphes, sj; et
¥, sont des difféomorphismes @& x ST qui se prolongent en tant que difféomorphismeldex D?. Ceci permet
certaines opérations sur les lignes et les colonnes,deSI(3, Z). On obtient ainsi une certaine forme standard pour
¥« si Xy, est une surface de Hopf homologique. Ces possibilités powe distinguent par des élements d@SL).
En utilisant un argument sur I'attachement de 2-anses, on observe finalement que toutes ces/matdcésent des
variétés difffomorphes.

1. Introduction

The (standard) Hopf surfacg! x $° fibers over the 2-spher§® via the map obtained by composing the Hopf
fibration S3 — $2 with the projection on the second factor. Any fibre is diffeomorphic to the t@risnd there
are no singular fibers, because this map is a submersion. It is a natural problem to study the effect of logarithmi
transformations on two fibres in this case. Indeed, this operation was successfully used in the case of the K3 surfa
to construct exotic K3 manifolds as well as on other elliptic fibrations. These results have been obtained using gaug
theoretical methods, which only apply for manifolds V\lpt}ﬁ >111,3,8]. Note that all K3-surfaces are diffeomorphic
4-manifolds, and there exist complex K3-surfaces which are elliptic fibrations. In the case of the K3-surface the
resulting manifolds depend only on the multiplicities of the logarithmic transformations, but in our considerations
they depend on some additional parameters as well.

For 4-manifolds with the rational homology of a Hopf surface the existing gauge theoretical methods do not apply.
On the other hand it is a fundamental and open problem whether 4-manifolddmithd [9] (like the 4-sphere
and the Hopf surface) do admit exotic structures. In the complex geometric framework, exotic Hopf surfaces do no
exist, for by a result of Kodaira [6] every complex surface which is homeomorphit to S2 is a primary Hopf
surface, so it is diffeomorphic t6% x $3. Complex surfaces which are rational homology Hopf surfaces have been
classified in [2] using logarithmic transformations. Further results about elliptic surfaces in the class of complex
surfaces can be found in [3]; in particular, from Chapter 2.7 therein it follows that elliptic surfaces of Euler number
zero with Abelian fundamental group, and which are integer homology Hopf surfaces, are the standard Hopf surface
Our considerations here, however, are purely topological in nature and the logarithmic transformations considered a
more general than the complex-geometric ones. In particular, logarithmic transformations with multiplicity zero do
not arise in the complex geometric setting, and may even result in manifolds not admitting any complex structure a
all [4].

We will first calculate the fundamental group of the manifold obtained by two logarithmic transformations. As it
will turn out, in many cases, including multiplicity 0, the resulting manifold will have the same fundamental group as
the Hopf surface. Since the Euler characteristic is invariant under logarithmic transformations, we will obtain a mani-
fold having the same (integer) homology as the Hopf surface. We will then describe a procedure to construct all thes
manifolds by gluing two copies df? x D? via a diffeomorphism between their boundaries. Using diffeomorphisms
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of 72 x $1 which extend ovef2 x D2, we will be able to show that manifolds given by different gluing diffeomor-
phisms may still be diffeomorphic. Using this observation, we will find a certain standard form for every homology
Hopf surface obtained by this gluing method. The possible standard forms are determined by eleméai&)jn Sl
Finally, using a handlebody-theoretical argument [7], we prove that this parameter does not affect the diffeomorphism

type.
2. Logarithmic transformations applied to Hopf surfaces and resulting fundamental group

Definition 2.1.Let 7 : X — X be an elliptic fibration. We say that a 4-manifotd is obtained fromX by logarithmic
transformation on a regular fibrE of = if X’ is obtained fromX through the following construction: We cut out
a regular neighbourhoodF of F and we glue in &2 x D? via an arbitrary orientation-reversing diffeomorphism
¢:T? x St — 9vF. The absolute value of the degreend;, r o @l pxs1 is called the multiplicity of the logarithmic
transformation [4].

The diffeomorphisnmyp is determined, up to isotopy, by its induced isomorphism of fundamental groups, which
itself, after the choice of some bases, is determined by a matrix(B) BJ. Alternatively, we fix one such diffeomor-
phism, which can be used to identify F with 72 x S. Then any other is determined by a self-diffeomorphism of
T2 x $1, and these diffeomorphisms are given, up to isotopy, by elements3n7s|

We will first give a gluing description of the Hopf-surfage= S x $2 which will turn out useful in what follows.

For this we shall first describ&® as two solid toris® x D? glued together. The two closed disb$ will turn out to
be the northern respectively southern hemisphere under the Hopf fibsstien $2. Indeed,$® can be seen as the
following set:

={(z.w) e C?| |z* + |w[* = 2}.

The Hopf fibration is then given by the mag — CP? given by(z, w) — [z : w], andCP* is diffeomorphic toS2.
Define SJr to be the set of elements, w) such that 0< |w|? < 1, andS2 to be the set of elements, w) with
0< |z|? < 1. Then there are diffeomorphisms

35 1w p? @S (2 2). and 2 stk p? @S (2, D).
lz|] z lw| w

When we restrictf o £~ to the boundary, then the maps® x D?) — 3(S* x D?) is given by the formula

fro fohu, &) = (ué, §).

We extend this latter map to the trivial factor by the identity, so that we get a mapT?2 x dD? — T2 x 9D?,
(u,v, &) — (u&, v, £). Here and further dowru, v) denotes an element in the fibfé = 1 x S1 € C x C, whereas
£ denotes an element in the bagé C C. We then get the description of the Hopf surface as a gluing

X =(T?x D?) U (T? x D?). 1)

Now let us consider the manifoldl’ obtained from the Hopf surface when performing logarithmic transformations
on two fibres, say on the fibrE. over the north pole :=[1: 0] and the fibreF_ over the south pole_ =[0: 1],
associated with diffeomorphisms.. There are natural identifications &X — v Fy) with the ‘inner’ boundary of
T? x (D? — D%/Z) according to the decomposition (1). Therefore the orientation-reversing diffeomorphisoen
be seen as an orientation-preserving diffeomorphistfiot S1, because the above ‘inner’ boundary is with opposite
orientation to the ‘outer’ boundary. Let us denotexby the two manifoldg 72 x (D? — DZ/Z)) Uy, (T? x D?). What
a gluing of two manifold along the boundary really means is actually an identification of collar neighbourhoods of the
boundaries of the two manifolds. In our case, this description is given as

Xi=(T? x (D* = D3 3)) Up,. (T% x 5§/3),

whereg.. : (%, %) x T2x St — (%, %) x T2 x Stis given by (r, u, v, &) == (% —r,ot(u,v,§)).
Let us now fix some paths inside? x T2, where the disc is thought of a subset@fcentered at the origin. Fix

some base-poirtio, vo, &) € T? x D?, where|&| = 2, so that the base point is in the ‘gluing area’. Let us define



40 R. Zentner / C. R. Acad. Sci. Paris, Ser. | 342 (2006) 37-42

three pathsvy, B+, y+ by the formulaer.s (1) = (1o, vo €, &), B+(t) = (ug€”, vo, &), andy(t) = (uo, vo, 0 €").

The pathy. is then a meridian to the fibr? x {0} overx., that is its projection onto the fibre is trivial, whereas

a4 andp. induce a basis of the fundamental group of the fibre. Note that by the same formulae we can define path
(aly, By, v4) inside the pieced? x D? to be glued in withp.. Then(a., B+, y+) induce a basis af1(X — vFy)
and(c/y, B, y1) induce a basis of1(3(T2 x D?)). The diffeomorphismg.. are then determined by their maps of
fundamental groups

* % a * % C
wi=(* * b>, ¢;=<* * d)’

which are elements in &, Z). The entries marked aswill not be relevant to the fundamental group, as we shall see
now. We call(a, b) € Z? the direction of the logarithmic transformatign , and| p| is its multiplicity.

In order to compute the fundamental groupXfwe shall first compute the fundamental groupskaf and then
glue them together via. X is given as the union of two open sets, namely the Xets- 72 x (D? — D%/3) and
Xo=T?%x 5% 3 With intersectionXo = 72 x (53/3 — Df/g). Only, Xg injects intoX via the natural inclusion, but
into X» via ¢. The fundamental group of each piece is

m1(Xo) = (w0, fo, o [, 1=1), m(X0)={w B,y I[,1=1), and m(Xp)=(",p" I, 1=1).

By [, ] we simply mean that all commutator relations are satisfied. Now the Seifert—-van Kampen theorem state:
that1(X ) has as generators together the ones@f1) andx (X>), all relations ofr1(X1) and ofr1(X>2), and the
additional relations

i) =¢(ag) & o' =¢(0), i(Bo)=0¢Bo) < B =¢Bo). and i(yo0)=¢(r0) & 1=9¢ ().

The first two relations imply that we can just drop the generatbendg’ together with these two relations. Therefore
the fundamental group is1(X+) = (a4, B+, ¥+ | [, 1=1, aiﬂf_y_f =1).

Correspondingly we get1(X_) = (a—, B—.y— | [, 1=1, « p%y? = 1). In order to compute the fundamental
group of X’ = X, U, X_ we proceed in the same wal? times a ‘middle annulus’ injects int&_ via the natural
inclusion, whereas it injects int& ;. via ¢. As we haves, (xg) = a4, £+ (Bo) = B+ andi,(yo) = a+y;1 we get a final
formula:

X)) =By I, 1=1 a“B(ay ™) =1, a“p?y? =1).

By the classification of finitely generated Abelian groups we find that we have an isomorphi¥M = Z & Z/uZ,

whereu is the highest common divisor of all the 2-minors of a presentation matrix for this group. It is easy to see that
there are various choices possible for which this number equals 1, including cases where one of the multiplicities, c
both of them, may be zero.

Remark 1. If we perform the two logarithmic transformations such that they are trivial onsthfactor, then the
construction isst times Dehn-surgery on the Hopf-link 7. The resulting 4-manifold is thest! times a lens space;
this can be seen using the surgery description of lens spaces [5].

3. Formulation in terms of gluing two copies of T2 x D?

We will denote byX,, := (T? x D?) U, (T? x D?) the 4-manifold obtained by gluin§? x D? to T2 x D? via
the orientation-reversing diffeomorphisgbetween their boundaries. Let us denoteA#/an annulus. There are
canonical identifications of the boundary-componentsdk A2 with 72 x $1, as before.

We will show here that all of the manifolds considered so far can be obtained by gluing just two copfes &2
along their boundaries:

Lemma 3.1.We have the following diffeomorphisiiy., = (T2 x D?) Uy, (T? x A?) U, (T? x D?).

Proof. As any diffeomorphism of one boundary-componenTdfx A2 extends over the whole @f? x A? the result
follows easily. O
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Our next purpose is to calculate the fundamental groufi ofLet us use the basés-., S+, :I:yfl) from above
(up to ‘orientation’) and suppose that the map which is now given by an element of(8] Z), looks as follows:

a ¢ g
(p*=<b d h) (2)
e f k

By the Theorem of Seifert—van Kampen a presentation of the fundamental gréypisgiven by (X,) = («, 8 |
[a, Bl =1, (@& )&M) = 1). Here(g, h) denotes the greatest common divisorgadnd, andg’, i’ are such that
g=1(g.h) g, h=(g h)h. We set(0,0) := 0. The fundamental group is therefore isomorphicrioX,) = Z &
Z/(g, h)Z. In particular, X, is a homology Hopf surface if and only {&, #) = 1, noting that anyX, has Euler-
characteristic zero.

If now we perform the logarithmic transformations associated withon the two fibersf. of the Hopf surface,
then the resulting manifold will be given by the following gluing construction

2 2 2 2 2 2 2 2
(T°x D )uq);l(T x A%) U (T? x A%) U,_ (T x D?)
which is diffeomorphic, by the above Iemma,x%llo{wf. Whether this manifold is a homology Hopf surface can

now be read off from the automorphis(m;l o ¢ o ¢_), of the fundamental group. However, calculating by this
matrix product the entityg, &), which a posteriori depends on the numhers, p andc, d, ¢ only, is a rather hard
problem.

Theorem 3.2.Suppose the manifol®, := (T2 x D?) U, (T? x D?), obtained from gluing with the orientation-
reversing diffeomorphism, is a homology Hopf surface. Théfy, is diffeomorphic to the Hopf surfacg x 3.

Corollary 3.3. If logarithmic transformations on two fibers yield a homology Hopf surface themthignifold is
diffeomorphic to the standard Hopf surfagé x S3.

Proof of the theorem. Observe first that the two manifoldé, and X, -1, ~are diffeomorphic as soon as the
t

diffeomorphismsy, and;, of T2 x §1 extend overT'2 x D? as diffeomorphisms. A diffeomorphisi extends iff
the associated matrix has the form

r t O
Yo=1s u 0]. (3)
v w 1

This observation can be used to commit certain line operationg, dy left-multiplication with matrices induced
by extending diffeomorphisms, as well as to commit certain column operations by right-multiplication with these
matrices, and this without changing the diffeomorphism type.

Suppose now thak,, is a homology Hopf surface with associated magrixas in (2) above. In particular, the
greatest common divisor ¢f and is one: (g, k) = 1. By left-multiplying with a matrixU e SI(2, Z) C SI(3, Z),
where the inclusion is as the upper left part in the 3matrix, we may assume that=1, » = 0 in (2). Such a matrix
U is of type (3). Now there is a matrik of type (3) such that left-multiplication of the new matix by L adds
—(k — 1) times the first line ofp, to its last line. Therefore we may suppose that 1. Now there is a matriR of
the type (3) such that right-multiplication of the newegtby R will add appropriate multiples of the third column of
@y to its first and second, so that we may assume f = 0 becaus& = 1. ¢, in (2) may therefore be supposed to
have the form

a ¢ 1

O = (b d O) . (4)
0 01

A corresponding diffeomorphism is given lpyu, v, z) = (u*v°z, u®v?, 7). Now we cannot simplify much further

in order to obtain the matri%,, where¢ is inducing the standard Hopf surface as above. However, the attaching

of T2 x D? to the upperT? x D?, which we shall denote by, , may be done by attaching first a 2-handle, then
two 3-handles, and eventually a 4-handle. To be more precise, decompose thE4anuthe obvious way into a
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0-handleXy, two 1-handlesZ11 and X1, and a 2-handle&s,. Then the attaching, via, of X x D? to X is done
along X x 9 D2, so we attach a 2-handle and g&® := X, U (Xg x dD?). Itis now easily checked thaf1; x D?
and X1» x D? are attached t& @ along a thickened 2-sphe# x D1, so their attaching corresponds to 3-handle
attachment. FinallyZ, x D? is glued to the resulting manifold along a 3-sphere, so that this corresponds to a 4-handle
attachment. Now the union of the two 3- and the 4-handle is diffeomorphic to a boundargtsum® i S x D3,
which is the gluing of two pieces a§! x D3 via a diffeomorphism between two discs in their boundaries. The
boundary of this manifold i§? x §2 # 51 x §2. Itis known [7] that any diffeomorphism ! x $%# S x §2, extends
over the whole boundary sum. Therefore only the 2-handle-attachment is relevant for determining the diffeomorphisn
type of the closed 4-manifold.

On the other hand, the attachingb§ x oD is determined, up to isotopy, by the attaching of the attaching sphere
{0} x ST as well as the isomorphism of normal bundigs, s1 ({0} x S1) — vr3(e({0} x 1)) induced by the derivative
dy. We shall denote by, this bundle isomorphism. After identification 8% with a ball centered in the origin iR2
we get a canonical isomorphisng, , 51 ({0} x §1) = ST x R2. By a framing f of ¢({0} x S*) we understand a fixed
isomorphism of the normal bundig;, , 51 ({0} x S*) with S x R2. We say that a framing is isotopic to the framing
' if they are homotopic through bundle isomorphisms. By replagipgvith £~ we see that the 2-handle attachment
is determined byp ({0} x SY), f), the embedding of the attaching sphere and a framing for it. So framings and the
isomorphismd.,, are equivalent notions. Up to isotopy the attachment depends only on the framing up to isotopy. If
we fix gne framing, we see that all possible isomorphisms of normal bundles are given by bundle automorphisms ¢
ST x R2,

Now for the above choice af the attaching of the attaching sphere does not depend on the specific engrjes in
We identify the normal bundle af({0} x S1) with orthogonal complement to its tangent bundle witti(7'3), and
get an identification witl§* x R? by specifying two constant orthonormal sections of that bundles (1, 0, —1)
andez = (0, 1, 0). The isomorphisni,, is then given by theonstantmatrix

a c
L=(5 o)

Because this matrix is in 8, Z) we see that there is an isotopy of bundle automorphisms taking one into the other,
in other words the corresponding framings are isotopit.
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