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Abstract

We investigate some simple techniques of computation of the weights (‘moments’) of simplicial Whifoews of first poly-
nomial degree. The classical metric-dependent computation of weights is shown to be equivalent to an affine one, more suitable ir
the context of differential formdlo cite this article: F. Rapetti, C. R. Acad. Sci. Paris, Ser. | 341 (2005).
0 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Calcul des poids pour les formes de Whitney simpliciales de degré polynomial uf@n étudie quelques techniques simples
de calcul des coefficients (‘moments’) deformes de Whitney de degré un sur lesimplexes. On montre I'équivalence entre
la méthode classique, de type métrique, pour le calcul de ces poids, et une méthode de type affine, mieux adaptée au contexte d
formes différentiellesPour citer cet article: F. Rapetti, C. R. Acad. Sci. Paris, Ser. | 341 (2005).
0 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Version frangaise abrégée

Les éléments de Whitney [1,5,6] sont peut-étre les plus utilisés pour approcher des champs scalaires ou vectorie
en électromagnétisme. Dans cette Note, on reprend, dans la Section 2.1, une idée de Alain Bossavit parue dans |
§1.7.1, §1.7.2] sur une facon de définir les formes de Whitney de degré un. En considérant ces formes comme u
outil pour décrire une ligne (ou une surface, etc.) par des sommes pondérées (ou « chaines ») d'arétes (ou de face
etc.) d’'un maillage donnésur le domaine2 c R? considéré, on arrive a la Définition 2.1. Les coefficients de ces
sommes sont legoidsde la ligne (ou de la surface) dans la chaine et la maniére de les attribuer est le point central
dans la construction des formes de Whitney. Au §2.2, cette idée conduit & des stratégies simples et équivalentes ¢
calcul des poids deg-formes, 0< p < d, sur un simplexe quelconque de méme dimengioha Proposition 2.2
présente la méthode classique : on peut calculer les intégrales qui définissent les poids par la formule de quadrature
point milieu. La méthode classique répose sur la définition d’'une métrique sur I'espace affine ambiante, pour calcule
des quantités, les poids, qui sont indépendants de toute métrique. Par contre, la Proposition 2.3 et le Corollaire 2.
dérivent de la Définition 2.1 : ils montrent comment ces poids sont calculables de facon affine, a partir seulement
de la connaissance des coordonnées barycentriques et en fournissent une interprétation géométrique. Un outil de ty
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affine est mieux adapté dans le contexte des formes différentielles. Parmi les applications possibles, il permet de traif
aisément le probléme du calcul des poids pour les formes de Whitney d’ordre supérieur, comme on le montrera dal
un travail futur.

1. Introduction and notations

Whitney elements [1,5,6] are perhaps the most widely used finite elements in computational electromagnetics
In this article, we present in Section 2.1 the idea of Alain Bossavit described in [2, §1.7.1, 81.7.2] about a way to
define Whitney forms of polynomial degree one, and we develop it in Section 2.2 to design some simple strategie
to compute their ‘weights’ on simplices. These strategies, the one classical metric-dependent and the other affine, ¢
shown to be equivalent. A geometrical interpretation of the weights is also provided and we end, in Section 3, by som
considerations.

Let 4 be the ambient dimension. Given a dom&inc R?, a simplicial mestmin £2 is a tessellation of2 by
d-simplices, under the condition that any two of them may intersect along a common facet, i.e., a common subsimple
of dimension 0< p < (d — 1). In dimensiond = 3, which we shall assume when giving examples, this means along
a common face, edge or node, but in no other way. Labets f, v are used for nodes, edges, etc., each with its
own orientation, andv”, w¢, etc., refer to the corresponding Whitney forms. Boldface connotes ‘discrete’ objects,
especially arrays of scalars. The sets of nodes, edges, faces, volumes (i.e., tetrahedra), are d&hptad Bih, Vim
When in need for the generic symbol, we denoteSEythe set ofp-simplices ofm The sets op-simplices are linked
by the incidence matriceG, R, D, in dimensiond = 3, otherwise the generic notatiahwill be used, suffixed by
p if needed. For instancef =}, .o R¢%e expresses the boundary of facetas a formal linear combination of
edges (such a thing is calledpachain, withp = 1 here, see more details also in [1]). SymBaill serve ford’,

i.e., as a generic notation for the transpof8dR’, G’. Recall thatd is the boundary map for chains: e.g., given
c={c/: f e Fm} wehaved(}_ ;.7 ¢/ f) = ,cq (9C)°e, with § = R’ in this case. Our results hold for any spatial
dimensiond and all simplicial dimensions § p < d, but are stated as if was 3. So we shall assume a specifim
proofs and prefeR, D, or D, R?, tod or 3, but it should be clear each time that the proof has general validity.

2. Whitney forms

Fields, in electromagnetism, are observed via quantities, such as electro-motive forces, intensities, etc., whic
correspond to line integralgi¢culationg, surface integralsfliuxes, etc. A field (say, for example;) then maps a
p-manifold S (p = 0 for points, 1 for lines, and so on, and 2 in our example wiseieea surface) to a number, here
[gb. If w/ are facet elements, thenis represented by e, brw/ which we shall denote bynp, being pmthe
interpolation operator of a field on the Whitney forms. Suppose that we reflage p-chain pf,S = Zfefmcff,
being p/,, the operator mapping a surface in its ‘finite’ representation, and let us interpret the $galsshe ele-
mentary valueg, b (fluxes, here). Then a natural approximatiorfgb is obtained by substitutingf,,S for S. Hence
an approximate knowledge of the figldi.e., of all its measurable attributes, from the arbay (by: f € Fn}. The
problem is then: “how best to represehby a chain?”. Solving it yields definitionof Whitney forms [8]:w/, for
instance, is, like the field itself, a map from surfaces to real numbers/, whose value we denote bfg w/ or

by (w/, S). Note that, with this conventiontb, pS) = (b, Y ez ([sw) ) =Y sz, [sw! (b, f) = (pnb, S). So,
w/ is the Whitney form of polynomial degree one associatedl tmd the weight (omomen}of S in the chainp!,S
is [(w/ = (w/, S). Note how this justifies thep?." notation.

2.1. A generative formula for Whitney forms

We wish to represent a-manifold by ap-chain. Forp = 0, any pointx of the meshed domain with positiorcan
berepresentedas=} ", N O, wherei, (X) is the barycentric coordinate of pointvith respect to node. Note
that, (x) # 0 when the poink belongs to one of the tetrahedra with a vertex ir§o, the weight ok with respect
to noden is 4, (x) and the O-chaipix = ZnENm(w", x)n is its representation. The Whitney O-forat is thena,,,
the hat function of the finite element method. The definitiop@f =, - g.w" for afieldg is obtained by trans-

POSItion: (g, prx) = (g, D peniy A (ON) = 3 e ne A ()G n) = 32 cnr @n " () = (3, epnr gnw”, X) = (P, X).
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Fig. 1. Left: the 1-chain associated with the segmentn is —1,, (X)mn + A (X)nk + A;(X)nl. The minus sign in front of,, (x) is due to the fact
that the oriented edgen starts inm, and ends im. In terms of incidence number§}"” = —1 andG;;"* = 1. Edges of the volume({m, k, n, I}
which do not have: as vertex make no contribution to the 1-chain. Right: the 2-chain associated with the suvfads A; (X)mnl + A (X)kmn.
The orientation of edge agrees with that induced on it by the two oriented faga$ andkmn, so R’e"”’ =1 andR’;’"” =1.

Hat functions have a double feature: they are the weights that represent a generic point as a linear combination of th
mesh node positions, as well as the interpolants that allow for defining scalar functions from their nodal values at the
mesh nodes. In the following, when= {m,n} and f = {I/, m, n}, we denote the nodeby f — e. Thusi s_, refers,
in that case, ta,,.

For p =1, letxy be the oriented segment going from painto pointy. We know thatp!x = D oneN, (W, x)n,
and we figure outpfxy by linearity: pixy = > s (w", y) pi(x Vv n). As suggested in Fig. 1pi(x Vv n) =
2 ectmCrre—n(¥e. ThUS ploxy =37, eegr, Crite—n O (", y)e =3 e, (0, xy)e. Hence

(W, xy) = Y Giden () (", y).
nENm

Having 0= (w®, xx) =}, cnr, Gide—n (X)(w", x) andd the dual (in the sense of [9]) af we get that

(W xy) =Y Gihen(W", y—x)= Y Giden(O(w", dxy)) = D Gihemn(X¥)(dw", xy)
neNm neNm neNm
for any ‘small edge’xy, i.e., a segmenty entirely contained in the cluster of tetrahedra aroundnd thernw® =
Zne/\fm Gire—p dw”. The same mathematical steps can be dongfer2 and p = 3, with obvious generalization
whend > 3, yielding the following recursive definition of Whitney forms.

Definition 2.1. The differential(p + 1)-form w? given by
w? =Y df Ay du* 1)

seSH

is the Whitney form of polynomial degree one associated tat 1)-simplexo, 0< p <d — 1.
2.2. Practical ways to compute weights for Whitney forms

Once a metric is introduced in the ambient affine space, differential forms such, ag, etc., are in correspon-
dence with scalar and vector fields (called ‘proxy fields’ — metric dependent, of coarse) whose expression is given
in formula (1) by replacing! with grad. For instance, the vectaw® = A, grad A, — A, grad 2, is the vector field
associated to the edge= {¢, m}. Its weight with respect te (or circulation alonge) is 1 and 0 on other simplices
in mof matching dimension. Moreover, given two adjacent tetrahednadv’ sharing a facef with e as part ofaf,
the tangential component af is continuous acrosg. Thanks to this property, the sBt! = sparfw®: e € £y} plays
the role of internal Galerkin approximation space for the Sobolev spacerl, £2) (see [4] for the definition and
properties ofH (curl, £2)). Therefore, a vector field € H (curl, £2) can be represented Wi by pri = Zeegmhewe
where the scalak, is the circulation of: along the mesh edgec &y, i.e., the weight pz, e).

1 For anoder, an edger, a facetf and a tetrahedron, formula (1) yields the following scalar or vector functions:

wh =%y, wé= Z Gl he—p dw”, wl = Z R‘})Lf_edwe, w?’ = Z Dl{kv_f dw/ . )
neNm ec€m feFm
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Let xy be the oriented edge with verticesy, xyz the oriented triangle with vertices y, z andxyzt the oriented
volume with vertices, y, z, ¢. In a code conceived in terms of proxy vector fields, with an underlying metric, instead

of differential forms, the evaluation of circulations along edges (or fluxes across surfaces, etc(pofw/, etc.) is
done according to the following well known result.

Proposition 2.2.Letv = {k, [, m, n} be a given tetrahedron. Then

(w", x) =r,(X), xe€v,

<we’ )= |xy|(w)(xxy) . txy)v xyCv, e= {m, n}, (3)
(w/, xyz) = [xyz|(w/ Kuyz) - Nayz),  xyz Cw, f={m,n,k},

(w¥, xyzt) = |xyzt|, xyzt Cv,

wherex,, (resp.Xyy;) is the barycenter ofy (resp.xyz), txy (resp.ny,) is the unit vector alongy (resp. normal
to xyz), |xy| is the length ofy, |xyz| the area ofryz, and|xyz¢| the volume okyzt.

Note that Proposition 2.2 relies onetric tools such as dot product, segment lengths, etc., to compatec-free

quantities. The weightw/, xyz) does not depend, in fact, on the shapefaindxyz but on their relative position
and orientation.

Thanks to formula (1), in the following Proposition we state an equivalerdaffineway to compute the weights.

Proposition 2.3.Letv = {k, [, m, n} be a given tetrahedron. Then
(w", x) = det(xn(x)), X €v,

e v A () A (X) B

(w ,xy)_det<km(y) kn(y))’ xy Cv, e={m,n},
() A () Ar(X)

(wl, xyz) =det| an(y) M) MO |, xyzCu, f={m,n,kl,
@ M@ (@)

Jn ) M) A0 20

v _ )\m(y) )\n(y) kk(y) )\l(y)

Whayzy =detl 3" 2 m@ @ uo |0 VECY
I I 2 A

Proof. The first statement is evident. For the second statement, by Definition 2.1, we can(wfitey) =
ZneNmGZAe_n(x)(dw", xy). By duality betweeni anda, the equality(dw”, xy) = (w", d(xy)) holds for any node
n € Nmand for any segmenty C v. We remark thatw”, d(xy)) = (w", y — x). Since 0= (w¢, xx), we have

e _ n n _ _ )\m (X) )‘n (X)

For the third statement, by Definition 2.1, we can wtite’, xyz) = D eckm Ref.kf_e(x)(dwe, xyz). By duality be-
tweend anda, the equalitydw?, xyz) = (w¢, 3(xyz)) holds for any edge € &nand any surfaceyz C v. We remark
that (w€, 3(xyz)) = (w, xy + yz + zx). Since 0= (w/, xzx) = Zeeng?)»f—e(XNwe, zx) and 0= (wf, xxy) =
Zeegm R;Af_e(xxwe, xy), we have

(', xyz) =" RGAp ()W, y2) = Am 0w H, yz) + 1, 00 (™, y2) + M 0 (w!™™, y2)

ee€m

which proves the second statement. The same strategy can be applied to prove the last statement.

In the following corollary, we provide the geometrical interpretation of the weights.
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Corollary 2.4. Letv = {k, I, m, n} be a given tetrahedron with unit volunigmn|. Then
(w", x) = |xklm|, x €,
(we, xy) = |xykl|, xyCv, e={m,n},
(w/,xyz) =|xyzll, xyzCu, f=1{m,nk}, *
(w¥, xyzt) = |xyzt|, xyzt Cw.

Proof. Let us denote bk the vector(x, yx, zx)" and similarly forn, m, I, andx. By definition of barycentric coordi-
nates of a point € v with respect to the verticés [, m, n of v, we can write

X = A OOK + 1)1 + A, )M + A, (XN, With 1= Ar(X) + A;(X) + A (X) + A, (X). (5)
By subtractingk from both sides, we get—k = 1, (X)(I — k) + A, (X)(m —K) + 1,,(X)(n — k). S0,A, (X) = det(l — Kk,
m — Kk, x — k)/detl —k, m —k,n —Kk) = |xkim|/|nklm|, being the mixed produat — k) - [(m — k) x X —k)] =
6|xklm| equal to defl — k, m — k, x — k).
Concerning the second statement, we write

1 0 0 o0 ) M) ) Ak

Am(X)  Ap(X) _ 0 1 0 0 _ )‘k(l) )\l(l) )\m(l) )\n(l)
de‘(xm(y) My))‘det 0O M0 I 20 | T M0 w0 Am0 A0
Ak (y) Al (y) )Wn (y) An (y) Ak (Y) )\I (Y) Am (Y) )\n (y)

Thanks to Proposition 2.3 and the change of basis (5) from barycentric coordinates to Cartesian ones, we hav
(w, xy) = |xykl|. The same strategy is used to prove the last two statements.

Corollary 2.4 is important for another aspect, namely, we can talk about ‘volymes] in a general way, without
specifying the basis to compute it. A volume exists independently of the vector space basis, whereas the determinar
of the matrix to compute it is always related to a basis.

3. Conclusions

We have presented some simple strategies to compute the weights of simplicial Whitney forms of polynomial
degree one. These weights affineinvariants, they do not depend on metric quantities such as segment lengths or
surface areas, but on relative positions and orientations. Proposition 2.3 shows that it is possible to compute thes
weights in araffineway which is equivalent to the classicaktric-dependerdne of Proposition 2.2. Affine strategies
should be preferred in the framework of Whitney differential forms. Their utilization, for instance, in a multigrid
context [7,3], makes the exchange of information between different discretization levels of easy access whatever the
refinement procedure is used to generate these levels. Affine strategies make also possible to compute the weigh
for Whitney forms of higher order in a smart way. The technique presented in Proposition 2.2 can be used when
dealing with differential forms of degree> 1, provided that the integration rule is modified accordingly to be exact
for polynomials of degree. This problem is far from being trivial and is linked to another one, namely, the location
in a p-simplex of the degrees of freedom associated with Whitney elements of jordér Both problems will be
addressed in future work.
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