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Abstract

In this Note we discuss the numerical solution of a two-dimensional, fully nonlinear elliptic equation of the Pucci’s type, com-
pleted by Dirichlet boundary conditions. The solution method relies on a least-squares formulation taking place in a subset of
H2(2) x Q, whereQ is the space of the 2 symmetric tensor-valued functions with componentﬂ%@[)). After an appro-
priate space discretization the resulting finite dimensional problem is solved by an iterative method operating alternatively in the
spacesV}, andQ,, approximatingH2($2) andQ, respectively. The results of numerical experiments are presented; they validate
the methodology discussed in this Note.cite thisarticle: E.J. Dean, R. Glowinski, C. R. Acad. Sci. Paris, Ser. | 341 (2005).
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Résumé

Sur la solution numérique de I’ équation bi-dimensionelle de Pucci avec conditions limites de Dirichlet : une formulation
par moindres carrés. Dans cette Note, on étudie la résolution numérique d'une équation elliptique bi-dimensionelle, pleinement
non linéaire et de type Pucci. La méthode de résolution repose sur une formulation par moindres carrés dans un sous-ensemt
de H2(£2) x Q ou Q est I'espace des fonctions a valeurs tensorielles symetrigue®, 2ont les composantes sont darfg02).

Aprés approximation par éléments finis, on résoud le probléme en dimension finie qui en résulte par une méthode itérative qui opér
alternativement dans les espadgset Qy,, approximations respectives 2 (2) et Q. Les résultats d’expériences numériques

sont presentés; ils valident la méthodologie numérique décrite dans cettePhlateiter cet article: E.J. Dean, R. Glowinski,

C. R. Acad. Sci. Paris, Ser. | 341 (2005).

0 2005 Published by Elsevier SAS on behalf of Académie des sciences.

1. Problem formulations

Let £2 be a bounded domain &?2; we denote by the boundary of2 and byx = {x1, x} the generic point oR2.
Following, e.g., Caffarelli and Cabré ([3]; see also the references therein and [2]) we consider the fallomlingar
Dirichlet problemfor the Pucci’s equationFind v such that

art4+17 =0 inR, Y=g onrl, (PE-D)
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where, in (PE-D): (i (resp.,.~) denotes théargest(resp., thesmalles} eigenvaluef the Hessian matrixD2y =
(829 /x;9xj)1<i j<2, (i) @ € (1, +00) (if « = 1, (PE-D) reduces to the Poisson-Dirichlet problams = 0 in £2,
¥ =gonl’). We have thuat = 1/2(Ay + (|AY |2 — 4detD?y)1/?) andr~ = 1/2(Ay — (|Ay |2 — AdetD?y)1/?),
which, combined with (PE-D), implies in turn that

172

@+ DAY + (@ — D(|Aay|? — 4detD?y) 0 ing. (1)

It follows then from (1) that problem (PE-D) is equivalent to
{a|A¢|2+ (¢ —1)%2detD?y =0 inf2, =g onT,
Ay <0 ing.

Relations (2) show that the Pucci’s problem discussed here combines (nonlinearly) Poisson and Monge—Ampel
equations. The numerical solution of (PE-D), via (2), will be discussed in the following sections. Actually, assuming
thatg € H3/2(I"), we will look for solutions of (PE-D), (2) belonging t&2(2).

(2)

2. Some exact solutions

In order to validate numerical solution methods it is always useful to have access to (nontrivial) exact solutions.
Let xo € R?; we shall denotéx — xo| by p. Suppose that is a function ofp only verifying the partial differential
equation in (2). We have then (away from= xg and with obvious notation)

alp~ou) | + @ - Dt =0, 3)

It follows from (3) thatu defined byu(x) = Cp™ + p(x), whereC is a constantm = 1 — % orl—oandpis

a polynomial of degree 1, is solution of the partial differential equation in (2). However, singg™) = m?2p™ 2

away fromx = xo, in order to verify the inequality in (2) we have to take< 0. In other wordsy defined by

Y (x) = —Cp" + p(x), 4)
with C a positive constant ane and p as above, verifies the partial differential equation and inequality in (2). If
xo ¢ 2 theny defined by (4) belongs t6°°(£2); on the other hand, ifg € £2 the above functiony does not have
the H2(£2)-regularity.
3. A least-squaresformulation of problem (2)

Problem (2) is clearly equivalent to

p=D%,
a(p11+ p22)? + (@ — D2(p11p22 — p2,) =0, p11+ p22 <0, )
Y=g onrl,

with p = p’ = (pij)1<i j<2 and p;; = 3%y/dx;dx ;. Suppose that problem (2) has a solutiorHA(s2). Following

a strategy which has been successful with the Monge—Ampére equation (see [4]) we are going to investigate a lea:
squares method, operating #7(£2) and related functional spaces, for the solution of problem (5). Let us introduce
the following spaces and set:

Ve={plpeH* ), p=gonT}, (6)
Q={alq=(gi)i<i j<2 9ij € L*(2), a=7q'}, (7)
Qr=1{a19€Q, alqi1+922% + (@ — D?(q11922 — 4%,) =0, q11+g22 < 0 a.e. ins2}. 8)

The space&) is an Hilbert space for the following scalar product and norm:

(q,q/)Q=/q:q/dx and |qllo =+/(d, Do (= f|q|2dx>; 9)
2 2
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in (9), S: T = s11t11 + s22122 + 512112, S= (sijigi,j<2 andT = (tij)1<i, j<2s with S=5 andT =T/, and|S| =
+/S:S, VS, S= 9. A quite naturaleast-squares formulatioof problem (5) reads as follows:

{w7p}evg XQPs
LS.PE-D
{j(llf, p) <jle,q), VYi{p,q}eV, xQp, (LS )

with
. 1 2 2
Jj,q) = > D% — q|“dx. (10)

Theiterative solutionof problem (LS.PE-D) will be discussed in the following section.
4. Iterative solution of the least-squares problem

Let us denote byg, theindicator functionalof the setQ p, namely, the mapping fror® into R U {4-co} defined
by Ig, (@) =01if g€ Qp, Ig,(Q) =400 if g € Q\Qp. Problem (LS.PE-D) is clearlgquivalento

. (0.0 + Ton @], 11
{Mr}glvrlx Q[mo o) + 19, ()] (11)

At {y, p} anecessary optimality conditidior problem (11) reads as follows:
{Y.p} eV, xQ; V{p,q} e VoxQ, we have

/ (D% — ) : (D2 — q) dx + (910, (p). q) = O, (12)

with 91, (p) a generalized differentiabf functional Ig, (-) atp. To (12), we associate the followingitial value
problem

Find {y (1), p(1)} € Vg x Q, Vi € (0, +00), such that
/A(aw/az) Agodx—i—/Dzw D2<pdx—/p D?pdx, Vg e Vo,

2 2 13)
/a_p +/p:qu+<31QP(p),q)=/D21p:qu, vgeQ,
2

2

2

{¥(0),p(0)} = {0, po}.-

In order to solve problem (13), we advocatperator-splitting applying to the solution of (13) thMarchuk—
Yanenko schemwe obtain (withr (> 0) a time-discretization step):

{v° p°% = (Yo, po); (14)
then forn > 0, {y", p"} being known, computéy” 1, p"*+1} via the solution of

(" —p")/T+p" T+ 0lg, (0t = D*y",  and (15)

/ A" =y /] Apdy + f D>yt D%pdx = / p" 1 D% dx, Vg e V. (16)

2 2

Sincelinear variational problemssuch as (16) have been encountered already, when addressing for example the
solution of the elliptic Monge—Ampeére equation by augmented Lagrangians and least-squares methods (see [4,5] fo
details), we shall focus (in Section 5) on the solution of the (hightylinear problemg15).

Remark 1. An alternative to scheme (14)—(16) is provided by

{v°,p°% = {vo, pok; (17)
then forn > 0, from {y", p*} compute{y"+1, p"*1} via the solution of
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(pﬂ+l/2 _ pn)/_c + pl’l+1/2 + aIQp (pn+1/2) — O, (18)

Yt e Ve f Al =y /] Apdx + / D"+ D?pdx = / P2 D?%pdy, Ve Vo, (19)
2 2 2

(pn+l _ pn+1/2)/1, — Dan-l—l' (20)

Other splitting schemes are possible.
5. Solution of the nonlinear problems (15)

Relation (15) is nothing but aecessary optimality conditidior the following minimization problem:

min |::—l(l+1)/|q|2dx—f(p"—i—tDzdf”):qu] (21)
qeQp| 2
2 2

Problem (21) can be solvgmbint-wise(in practice at the vertices of a finite element or finite difference mesh). Indeed,
we have to minimize, a.e. o2, a three-variable polynomial of the following tyggz? + z3 + z3) — (b1z1 + boz2 +
b3za), overthe sefz| z={z;}>_;, alz1+ 2212+ (@ — D2(z122 — z3) = 0, z1+ 22 < 0}. The abovehree-dimensional
problemcan be reduced to a simptme-dimensionabne; to achieve this dimension reduction we shall proceed as
follows:

(i) Denotea/ (o — 1) by y and observe that the above minimization problem is equivalent to the minimization
of 3[22 + 23 + y(z1 + 22)% + z122] — b1z1 — baza — |b3l(y (z1 + 22)% + z122)Y/2 over the subset dR? defined by
{{z1. 22} [ 21 + 22 <0, y(z1+ 22)? + z122 > O} (completed by = sign(bs)(y (z1 + 22)? + z122)7/?).

(ii) Take z1 = pcosd, z2 = psing, with p > 0 and6 € [0, 2r). There is equivalence between the minimization
problem in (i) and the maximization problem below

maxF (0), (22)
6ekKy

with F(0) = [b1 cOS +bpsind + |bslly + (3 +y) sin¥1Y?] /[1+y + G +y)sinB Y2, Ky = (7 — S¢c. 3F + S0
and ¢. = sin"1[2y/(2y + 1)]. Let denote bydy, the solution of problem (22); i (6,) < 0, the solution of the
minimization problem (i) is{0, 0, 0}. If F(0y) > 0, the solution of the above problem #s= {z1, z2m, z3m}
With z1y = pu COSOy, zom = Py SINOu, zam = SIGNb3)[y (zam + z2m)? + zamzam1Y2, pu being given by
om = [b1COSOy + baSindy + |b3|[y + (% +y)sin®y 12 /114y + (% + y)sin X,,]. To solve the maximiza-
tion problem (22) we used the derivative-free methods discussed in [1].

6. On theinitialization of algorithm (14)—16)

Concerning theénitialization of algorithm (14)—(16) (and (17)—(20)) an obvious choice is provided-byy° = 0
in 22, ¥9 =g on I, followed by p® = D2y%. A more sophisticated one (inspired by relation (1)) is the following:
(i) Solve the following Poisson problem: Ay 1 =0in 2, v~ 1 =g on I', and definep~! by p~1 = D2y L.
(i) Solve — Ay % = 2[(« — 1) /(a + 1)1/ |detp—1| in £2, ¥° = g on I" and defing® by p® = DZy/°.

7. Numerical experiments

Problem (PE-D), (2) being clearly of the Monge—Ampére type (albeit more complicated) we have used to ap-
proximate it the mixed finite element method discussed in [4—6]. Moreover, the results presented below have bee
obtained by a discrete variant of algorithm (17)—(20), since, on the basis of numerical experiments, this algorithn
appears more robust and faster than (14)—(16). For the two families of test problems discussed below we have tak
2 =(0,1) x (0,1) and defined the mixed finite element approximation, mentioned just above, from uniform trian-
gulations, like those used in [4] and [5]. Tfiest family of test problems motivated by Section 2; fax € [2, 3]
we consider those particular cases of problem (PE-D), (2) where the funci®ithe trace o™ of the function
x — —p @ with p = [(x1 + 1) + (x2 + 1)?]¥2. The above problem hag = —p1~¢ as exact solution; we clearly
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havey e C*°(£2). Applying to problem (PE-D), (2) the solution method briefly discussed in the preceding sections

we obtain the results shown in Table 1.
In Table 1,n;; denotes the number of iterations necessary to achieve convergence, the corresponding stopping

criterion being||Dﬁw;l’ — Pillo,e < e (with || - o, denoting theL2(£2)-norm, the other notation being obvious);

Table 1

First test problem: convergence of the approximate solutions

a  h T nie Vg —vloe 1DV —plo.ge
2 1/32 10 74 01346x 1004  0.8964x 10°°
2 1/64 10 81 (3370x10°° 0.9051x 10°©
2 1/128 10 83 (B435x 108 09625x 1076
2 1/32 100 63 01347x 104 0.9112x 106
2 1/64 100 69 (B371x 105 09263x 106
2 1/128 100 71 (B443x 10 0.9520x 1076
25  1/32 10 159 04112x 1004  0.9483x 1076
25 1/64 10 194 01029x 1004  0.9956x 10~°
25 1/128 10 211 (@®577x10°° 0.9705x 1076
25 1/32 100 135 01112x 104 0.9733x 10°°
25 1/64 100 166  (L029x 10°4 0.9624x 10~
25 1/128 100 180 (®577x10°°  0.9609x 10~
3 1/32 10 377 01027x 1073  0.9992x 106
3 1/64 10 672 ®@569x 1074 0.9967x 1076
3 1/32 100 321 @027x 1073 0.9818x 10~
3 1/64 100 570 (@569x 1074 0.9991x 106

Table 2
Second test problem: summary of numerical results

« h T o IDZvs — p5llo.2 /1P lo.2
2 1/32 10 67  09992x 10°5
2 1/64 10 70 09590x 107°
2 1/128 10 75  ©831x 10°°
25  1/32 10 158  (0872x 107°
25  1/64 10 167  (©801x 1075
25 1/128 10 168  (M894x 10°°
3 1/32 10 978  (©996x 1075
3 1/64 10 1000  (7865x 104
3 1/128 10 1000  (B120x 1074

alpha=1, t=1/128, deltat=10

alpha=2, h=1/13;

tat=10

Fig. 1. 2nd test problem: (& =1, h = 1/128,t = 10); (b) (0« =2, h =1/128,7 =10); (¢) (¢ = 3, h = 1/128,7 = 10).
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x1=112, alpha=2.5, h=1/32, 1/64, 1/128 x1=x2, alpha=2.5, h=1/32, 1/64, 11128

1 1 T T T T T T
09 4 09 4
08 08 4

7

0'5 0.6 0‘7 0'3 0'5 1 0 0I2 0I4 0'6 UIB : 1‘2 1‘4
@ (b)
Fig. 2. Graph of}, restricted to (a) = 1/2; (b) x1 = x2, (@ = 2.5,h = 1/32, 1/64, 1/128).

0 o1 02 03 04

{v;,, p;,} denotes the computed approximation(¢f p}. We tooke = 10-5. The results displayed in Table 1 call for
several comments: (i) The larger the faster the convergence of the iterative method, but the speed of convergence
does not improve much asincreases; similarly, the number of iterations necessary to achieve convergence does no
depend much of, for a givene. (i) For this test problem, we clearly hayg/, — v ||lo.o = O(#?). (iii) The speed of
convergence deteriorates @sncreases; this is not surprising, since close to a solution of problem (2), the (Monge—
Ampére) operatop — detD?¢ is anonlinear hyperbolione whose importance, relative to the operates |Ag|?,
increases witlx, making the problem more difficult to solve.

The second family of test problent®rresponds tg defined byg(x) =0 if x € Uf‘zlﬂ-, g(x) =1 elsewhere
onI',with It ={x | x ={x1,x2}, 1/4<x1<3/4, x2=0}, I ={x|x={x1,x2}, x1=1, 1/4 < xp < 3/4},
3={x|x={x1,x2}, 1/4<x1<3/4, xo=1}, andly = {x | x = {x1,x2}, x1 =0, 1/4 < x2 < 3/4}. The above
functiong ¢ H%2(I") by far (actuallyg ¢ H/2(I")), implying that the corresponding (PE-D) problem has no solution
in H2(£2). In order to overcome this difficulty we approximageby gs defined as follows on the edde | x =
{x1,x2}, 0<x1<L, x2=0}0f 2: g5 =1,if0<x1 <1/4—-80r3/4+5 <x1<1,g5=0,if1/4+5 < x1 <3/4-5,
gs = COS[1/4(x1 — 1/4+8)(/8)]if 1/4—8 < x1 < 1/4+ 6, g5 = cOS[1/4(x1 — 3/4—8)(m/8)]if 3/4— 8 < x1 <
3/4 + 8, and similarly on the three other edges; abdves a ‘small’ positive parameter. The functi@gp is clearly
in H%2(I"). Applying the methodology of the above sections leads - 1/16 — to the results summarized in
Table 2 and visualized in Figs. 1 and 2 (with —,- — - —- , and— — — corresponding t& = 1/32,1/64, and
1/128, respectively). The solution is clearly an increasing functiom ahd the convergence @f, to a limit ¢ as
h — 0 is clear from Fig. 2.

Acknowledgements

The authors thank L.A. Caffarelli for introducing them to the Pucci’s equation and some of its fascinating proper-
ties. The support of NSF (Grant DMS-0209066) is also acknowledged.

References

[1] R.P. Brent, Algorithms for Minimization without Derivatives, Dover Publications, Mineola, NY, 2002.

[2] X. Cabré, Topics in regularity and qualitative properties of solutions of nonlinear elliptic equations, Discrete and Continuous Dynamical
Systems 8 (2) (2002) 289-302.

[3] L.A. Caffarelli, X. Cabré, Fully Nonlinear Elliptic Equations, American Mathematical Society, Providence, RI, 1995.

[4] E.J. Dean, R. Glowinski, Numerical solution of the two-dimensional elliptic Monge—Ampeére equation with Dirichlet boundary conditions:
a least squares approach, C. R. Acad. Sci. Paris, Ser. | 339 (12) (2004) 887—-892.

[5] E.J. Dean, R. Glowinski, Numerical solution of the two-dimensional elliptic Monge—Ampeére equation with Dirichlet boundary conditions:
an augmented Lagrangian approach, C. R. Acad. Sci. Paris, Ser. | 336 (2003) 779-784.

[6] E.J. Dean, R. Glowinski, Numerical methods for fully nonlinear elliptic equations of the Monge—Ampére type, Comput. Methods Appl. Mech.
Engrg., in press.



