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Abstract

We will study the dynamics of Ishii’s equation using its Hamilton—Poisson formulafiorrite this article: P. Birtea,
M. Puta, C. R. Acad. Sci. Paris, Ser. | 341 (2005).
0 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
Résumé
Sur I'éguation d’Ishii. On va étudier la dynamique de I'équation de Ishii en utilisant une réalisation Hamilton—Poisson de

cette équationPour citer cet article: P. Birtea, M. Puta, C. R. Acad. Sci. Paris, Ser. | 341 (2005).
0 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Version francaise abrégée

L'équation de Ishii peut s'écrire sous la forme :

X1=1x2,
X2 =Xx3,
X3 = X1X2.

Dans cette Note nous étudions sa géometrie Poisson et quelques aspects de sa dynamique.

1. Introduction

The third order Ishii's equation, see [2], has the following form:
X' =xx. (1)
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Written as a system it can be expressed:

X1=x2,
X2 = X3, (2)
X3 = X1X2.

Proposition 1.1. For the systen(2) the quantities

1 1
H(x1, x2, x3) = x1x3 — éxg — éxf 3)
and
1
C(x1, X2, X3) = X3 — = X% (4)

2
are constants of motion.

These two constants of motion have a geometrical meaning, precisely:

Theorem 1.2. The systen(2) has a Hamilton—Poisson realization with the Hamiltoni&ingiven by(3) and with
the Poisson structure given by

af o af o af o af o
{f,g}le(_f_g__f_g>+_f_8__f_g

0x2 0x3  0x3 0x2 dx2 dx1  Oxq1 0xp
Proof. One readily checks that
xi={x,H}, i=123,

give the result. O
Remark 1. It is not hard to see that the functighgiven by (4) is a Casimir of our configuratigi®?, {-, -}).
Theorem 1.3. The systenf?) has an infinite number of Hamilton—Poisson realizations.

Proof. Itis easy to see that

(R3, {-, Yap Hs.y ),
where

1, 1, 13,
Cop(x1,x2,x3) =« X3 5X] + B xax3 — zx5 — 5x7 ),

2 3
{f,8lap = —VCaup(Vf xVg),
H(S)/(-x19x27x3):5 )C3——xl —i—)/ _xlx3__x2__xl ,
2 2 3
o, B,y. 8 eR, ay—psi=1,

are Hamilton—Poisson realization of the dynamics (2)

Thus, the equations of motion for our system (2) are unchanged (so the trajectories of the mifiaarimain
unchanged) when the energland the Casimic are replaced by S, R) linear combinations off andC.
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2. Stability problem

It is easy to see that the equilibrium states of our system are
ey =(M,0,0), MeR.

Let A be the matrix of the linear part of our system, i.e.

0 1 O
A=]|0 0 1
0O M O
and then the characteristic polynomial is
PAey) () = —x(x? — M). (5)

Proposition 2.1. The equilibrium states,, have the following behavior

(i) ey, M > 0 are unstable
(ii) ep, M =0is unstable
(i) epr, M < 0 are spectrally stable.

Proof. The statement (i) and (iii) are consequences of the expression of the characteristic polynomial (5).
The statement (ii) follows if we take in account that the minimal polynomial of the maty) is

mA(eO)(x)zx?’. O

Next we will study the nonlinear stability @fy, for M < 0. In a neighborhood,,, of e)s we haveVC(x) #0
and consequently we obtain a 2-dimensional integrable distribution in this neighborhood. Vakisgfficiently
small, the Frobenius theorem guarantees ¥gatis diffeomorphic with(V,,, N CY(C(em)) % (a, b), where(a, b)
is an open interval dR that containg” (eyr) # 0; see [4] for details about integrable distributions and the Frobenius
theorem.

Our vector field it is mapped by this diffeomorphism immlc4<c<e ) 0), sinceC is a constant of motion.

The stability problem foe,,, M < 0 reduces to the study of stability ef; for the vector field (2) restricted to
the fiberC=1(C(en)).

The following transformation

x1 =M + r Ccosb,
X2=12,
r2sitg  M?
>t
gives us a set of adapted coordinates for the fibration
Ve = (Ve N C7HClenn)) x (a, b),

x3 = Mr Ccosh —

whereey, is transformed int@%, 0, 0) and (9, z) are local coordinates on the fibgr,, N C Y Cley)).
With these new coordinates our system becomes

. 2
b=——=
r sing@
=0,
) r2site M2
7= Mrcosy — —_—

2 +2'
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The function
M?3sirfo M3c059(2+sin29)+M3cos<9 M3z

z
2 6 2 6 2
is a constant of motion foX|C71(C(eM)).
We have thaV H ((%, 0)) = 0 and(HessH)((%, 0)) < 0 which proves thatZ, 0) is a nonlinear stable equilib-
rium for X‘Cfl(c(w)) and consequently,, is nonlinear stable critical point of (2) fae < 0.

In conclusion we have proved the following:

H@®,7)=—

Theorem 2.2. The equilibrium states,, have the following behavior

() ey, M > 0are unstable
(ii) ey, M <O are stable.

3. Lax formulation

We shall now discuss the Lax formulation along the trajectories of our dynamics (2). The notion of Lax formu-
lation along the trajectories can be found in [1].

Consider the matriX = diag(H, C, ) wherea is an arbitrary parameter ad = M (x1, x2, x3) € SL(3, R),
for each(x1, x2, x3) € R3. Then we have:

Theorem 3.1. The dynamic$2) has the following Lax formulation

A=A, B],
where

A=MSM™1
and

B=-MM*.

Proof. By construction, we havé = 0. We must check thatA, B) is a Lax pair
d .

aA =MSM Y+ MSMt—MmMSsMIvm?

=MSMt—mMsm—mm?
=MM*MSMt—MSM MMt
=[MSM~t, —MMm™Y

=[A,B]. O

4, Integrability via a Weier strass function

We shall prove now that the system (2) can be explicitly integrated via a Weierstrass function. To begin, let us
observe that the relations:

1,
X3 = 5xi = C (constany
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and
1, 13,

X1X3 — Exz — éxl = H (constant

lead us to:
1

x% = §X]3_ -+ 2C)C]_ — 2H
Since

(¥1)? = x5

we can conclude that:

1
(x1)? = éxf +2Cx1 — 2H. (6)
If we take now:
x1=12P
our relation (6) becomes:
. C H
2 3
=4 —p_ = -
P P+ 679 > @)

and consequently we have proved, see [3] for details concerning Weierstrass function:

Theorem 4.1. The dynamic$6) may be explicitly integrated via a Weierstrass function.
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